@article{SIGMA_2020_16_a98,
author = {Chao Li},
title = {Dihedral {Rigidity} of {Parabolic} {Polyhedrons} in {Hyperbolic} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a98/}
}
Chao Li. Dihedral Rigidity of Parabolic Polyhedrons in Hyperbolic Spaces. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a98/
[1] Aleksandrov A. D., Berestovskii V. N., Nikolaev I. G., “Generalized Riemannian spaces”, Russian Math. Surveys, 41 (1986), 1–54 | DOI | MR | Zbl
[2] Andersson L., Cai M., Galloway G. J., “Rigidity and positivity of mass for asymptotically hyperbolic manifolds”, Ann. Henri Poincaré, 9 (2008), 1–33, arXiv: math.DG/0703259 | DOI | Zbl
[3] Bamler R. H., “A Ricci flow proof of a result by Gromov on lower bounds for scalar curvature”, Math. Res. Lett., 23 (2016), 325–337, arXiv: 1505.00088 | DOI | MR | Zbl
[4] Brendle S., Marques F. C., “Scalar curvature rigidity of geodesic balls in $S^n$”, J. Differential Geom., 88 (2011), 379–394, arXiv: 1005.2782 | DOI | MR | Zbl
[5] Brendle S., Marques F. C., Neves A., “Deformations of the hemisphere that increase scalar curvature”, Invent. Math., 185 (2011), 175–197, arXiv: 1004.3088 | DOI | MR | Zbl
[6] Burkhardt-Guim P., “Pointwise lower scalar curvature bounds for $C^0$ metrics via regularizing Ricci flow”, Geom. Funct. Anal., 29 (2019), 1703–1772, arXiv: 1907.13116 | DOI | MR | Zbl
[7] Carlotto A., Chodosh O., Eichmair M., “Effective versions of the positive mass theorem”, Invent. Math., 206 (2016), 975–1016, arXiv: 1503.05910 | DOI | MR | Zbl
[8] Chodosh O., Eichmair M., Moraru V., “A splitting theorem for scalar curvature”, Comm. Pure Appl. Math., 72 (2019), 1231–1242, arXiv: 1804.01751 | DOI | MR | Zbl
[9] Chruściel P. T., Delay E., The hyperbolic positive energy theorem, arXiv: 1901.05263
[10] Chruściel P. T., Herzlich M., “The mass of asymptotically hyperbolic Riemannian manifolds”, Pacific J. Math., 212 (2003), 231–264, arXiv: math.DG/0110035 | DOI | MR
[11] Chruściel P. T., Nagy G., “The mass of spacelike hypersurfaces in asymptotically anti-de Sitter space-times”, Adv. Theor. Math. Phys., 5 (2001), 697–754, arXiv: gr-qc/0110014 | DOI | MR | Zbl
[12] Cox G., Miao P., Tam L.-F., “Remarks on a scalar curvature rigidity theorem of Brendle and Marques”, Asian J. Math., 17 (2013), 457–469, arXiv: 1109.3942 | DOI | MR
[13] Edelen N., Li C., Regularity of free boundary minimal surfaces in locally polyhedral domains, arXiv: 2006.15441
[14] Gromov M., “Dirac and Plateau billiards in domains with corners”, Cent. Eur. J. Math., 12 (2014), 1109–1156, arXiv: 1811.04318 | DOI | MR | Zbl
[15] Gromov M., “A dozen problems, questions and conjectures about positive scalar curvature”, Foundations of Mathematics and Physics One Century after Hilbert, Springer, Cham, 2018, 135–158, arXiv: 1710.05946 | DOI | MR | Zbl
[16] Gromov M., “Metric inequalities with scalar curvature”, Geom. Funct. Anal., 28 (2018), 645–726, arXiv: 1710.04655 | DOI | MR | Zbl
[17] Gromov M., Scalar curvature of manifolds with boundaries: natural questions and artificial constructions, arXiv: 1811.04311
[18] Gromov M., Four lectures on scalar curvature, arXiv: 1908.10612
[19] Gromov M., Lawson Jr. H.B., “Spin and scalar curvature in the presence of a fundamental group. I”, Ann. of Math., 111 (1980), 209–230 | DOI | MR | Zbl
[20] Grüter M., Jost J., “Allard type regularity results for varifolds with free boundaries”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13 (1986), 129–169 | MR | Zbl
[21] Huang L.-H., Jang H. C., Martin D., “Mass rigidity for hyperbolic manifolds”, Comm. Math. Phys., 376 (2020), 2329–2349, arXiv: 1904.12010 | DOI | MR | Zbl
[22] Li C., “A polyhedron comparison theorem for 3-manifolds with positive scalar curvature”, Invent. Math., 219 (2020), 1–37, arXiv: 1710.08067 | DOI | MR | Zbl
[23] Li C., The dihedral rigidity conjecture for $n$-prisms, arXiv: 1907.03855
[24] Li C., Mantoulidis C., “Positive scalar curvature with skeleton singularities”, Math. Ann., 374 (2019), 99–131, arXiv: 1708.08211 | DOI | MR | Zbl
[25] Miao P., “Measuring mass via coordinate cubes”, Comm. Math. Phys., 379 (2020), 773–783, arXiv: 1911.11757 | DOI | MR | Zbl
[26] Min-Oo M., “Scalar curvature rigidity of asymptotically hyperbolic spin manifolds”, Math. Ann., 285 (1989), 527–539 | DOI | MR | Zbl
[27] Schoen R., Yau S.-T., “On the proof of the positive mass conjecture in general relativity”, Comm. Math. Phys., 65 (1979), 45–76 | DOI | MR | Zbl
[28] Schoen R., Yau S.-T., “On the structure of manifolds with positive scalar curvature”, Manuscripta Math., 28 (1979), 159–183 | DOI | MR | Zbl
[29] Schoen R., Yau S.-T., Positive scalar curvature and minimal hypersurface singularities, arXiv: 1704.05490
[30] Simons J., “Minimal varieties in riemannian manifolds”, Ann. of Math., 88 (1968), 62–105 | DOI | MR | Zbl
[31] Toponogov V. A., “Evaluation of the length of a closed geodesic on a convex surface”, Dokl. Akad. Nauk SSSR, 124 (1959), 282–284 | MR | Zbl
[32] Wang X., “The mass of asymptotically hyperbolic manifolds”, J. Differential Geom., 57 (2001), 273–299 | DOI | MR | Zbl
[33] Witten E., “A new proof of the positive energy theorem”, Comm. Math. Phys., 80 (1981), 381–402 | DOI | MR | Zbl
[34] Witten E., Yau S.-T., “Connectedness of the boundary in the AdS/CFT correspondence”, Adv. Theor. Math. Phys., 3 (1999), 1635–1655, arXiv: hep-th/9910245 | DOI | MR | Zbl