Twisted Hochschild Homology of Quantum Flag Manifolds and Kähler Forms
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the twisted Hochschild homology of quantum flag manifolds, the twist being the modular automorphism of the Haar state. We prove that every quantum flag manifold admits a non-trivial class in degree two, with an explicit representative defined in terms of a certain projection. The corresponding classical two-form, via the Hochschild–Kostant–Rosenberg theorem, is identified with a Kähler form on the flag manifold.
Keywords: quantum flag manifolds, twisted Hochschild homology, Kähler forms.
@article{SIGMA_2020_16_a97,
     author = {Marco Matassa},
     title = {Twisted {Hochschild} {Homology} {of~Quantum} {Flag} {Manifolds} and {K\"ahler} {Forms}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a97/}
}
TY  - JOUR
AU  - Marco Matassa
TI  - Twisted Hochschild Homology of Quantum Flag Manifolds and Kähler Forms
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a97/
LA  - en
ID  - SIGMA_2020_16_a97
ER  - 
%0 Journal Article
%A Marco Matassa
%T Twisted Hochschild Homology of Quantum Flag Manifolds and Kähler Forms
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a97/
%G en
%F SIGMA_2020_16_a97
Marco Matassa. Twisted Hochschild Homology of Quantum Flag Manifolds and Kähler Forms. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a97/

[1] Akrami S. E., Majid S., “Braided cyclic cocycles and nonassociative geometry”, J. Math. Phys., 45 (2004), 3883–3911, arXiv: math.QA/0406005 | DOI | MR | Zbl

[2] Baez J. C., “Hochschild homology in a braided tensor category”, Trans. Amer. Math. Soc., 344 (1994), 885–906 | DOI | MR | Zbl

[3] Beggs E., Paul Smith S., “Non-commutative complex differential geometry”, J. Geom. Phys., 72 (2013), 7–33, arXiv: 1209.3595 | DOI | MR | Zbl

[4] Borel A., Hirzebruch F., “Characteristic classes and homogeneous spaces. I”, Amer. J. Math., 80 (1958), 458–538 | DOI | MR

[5] Brown K. A., Zhang J. J., “Dualising complexes and twisted Hochschild (co)homology for Noetherian Hopf algebras”, J. Algebra, 320 (2008), 1814–1850, arXiv: math.RA/0603732 | DOI | MR | Zbl

[6] Čap A., Slovák J., Parabolic geometries. I Background and general theory, Mathematical Surveys and Monographs, 154, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl

[7] Connes A., “Noncommutative differential geometry”, Inst. Hautes Études Sci. Publ. Math., 1985, 41–144 | DOI | MR | Zbl

[8] Dolgushev V., “The Van den Bergh duality and the modular symmetry of a Poisson variety”, Selecta Math. (N.S.), 14 (2009), 199–228, arXiv: math.QA/0612288 | DOI | MR | Zbl

[9] Feng P., Tsygan B., “Hochschild and cyclic homology of quantum groups”, Comm. Math. Phys., 140 (1991), 481–521 | DOI | MR | Zbl

[10] Hadfield T., “Twisted cyclic homology of all Podleś quantum spheres”, J. Geom. Phys., 57 (2007), 339–351, arXiv: math.QA/0405243 | DOI | MR | Zbl

[11] Hadfield T., Krähmer U., “Twisted homology of quantum ${\rm SL}(2)$”, $K$-Theory, 34 (2005), 327–360, arXiv: math.QA/0405249 | DOI | MR | Zbl

[12] Hadfield T., Krähmer U., “Braided homology of quantum groups”, J. K-Theory, 4 (2009), 299–332, arXiv: math.QA/0701193 | DOI | MR | Zbl

[13] Heckenberger I., Kolb S., “De Rham complex for quantized irreducible flag manifolds”, J. Algebra, 305 (2006), 704–741, arXiv: math.QA/0307402 | DOI | MR | Zbl

[14] Hochschild G., Kostant B., Rosenberg A., “Differential forms on regular affine algebras”, Trans. Amer. Math. Soc., 102 (1962), 383–408 | DOI | MR | Zbl

[15] Hong J., Kang S. J., Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, Amer. Math. Soc., Providence, RI, 2002 | DOI | MR | Zbl

[16] Huybrechts D., Complex geometry: an introduction, Universitext, Springer-Verlag, Berlin, 2005 | DOI | MR | Zbl

[17] Karoubi M., Homologie cyclique et $K$-théorie, Astérisque, 149, 1987, 147 pp. | MR

[18] Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl

[19] Knapp A. W., Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser Boston, Inc., Boston, MA, 1996 | DOI | MR | Zbl

[20] Kustermans J., Murphy G. J., Tuset L., “Differential calculi over quantum groups and twisted cyclic cocycles”, J. Geom. Phys., 44 (2003), 570–594, arXiv: math.QA/0110199 | DOI | MR | Zbl

[21] Loday J.-L., Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301, 2nd ed., Springer-Verlag, Berlin, 1998 | DOI | MR | Zbl

[22] Matassa M., “Kähler structures on quantum irreducible flag manifolds”, J. Geom. Phys., 145 (2019), 103477, 16 pp., arXiv: 1901.09544 | DOI | MR | Zbl

[23] Matassa M., “Twisted Hochschild homology of quantum flag manifolds: 2-cycles from invariant projections”, J. Algebra Appl. (to appear) , arXiv: 1703.00725 | DOI

[24] Ó Buachalla R., “Noncommutative complex structures on quantum homogeneous spaces”, J. Geom. Phys., 99 (2016), 154–173, arXiv: 1108.2374 | DOI | MR | Zbl

[25] Ó Buachalla R., “Noncommutative Kähler structures on quantum homogeneous spaces”, Adv. Math., 322 (2017), 892–939, arXiv: 1602.08484 | DOI | MR | Zbl

[26] Sepanski M. R., Compact Lie groups, Graduate Texts in Mathematics, 235, Springer, New York, 2007 | DOI | MR | Zbl

[27] Snow D. M., “Homogeneous vector bundles”, Group Actions and Invariant Theory (Montreal, PQ, 1988), CMS Conf. Proc., 10, Amer. Math. Soc., Providence, RI, 1989, 193–205 | DOI | MR

[28] Stokman J. V., Dijkhuizen M. S., “Quantized flag manifolds and irreducible $*$-representations”, Comm. Math. Phys., 203 (1999), 297–324, arXiv: math.QA/9802086 | DOI | MR | Zbl

[29] van den Bergh M., “A relation between Hochschild homology and cohomology for Gorenstein rings”, Proc. Amer. Math. Soc., 126 (1998), 1345–1348 | DOI | MR | Zbl

[30] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl