@article{SIGMA_2020_16_a97,
author = {Marco Matassa},
title = {Twisted {Hochschild} {Homology} {of~Quantum} {Flag} {Manifolds} and {K\"ahler} {Forms}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a97/}
}
Marco Matassa. Twisted Hochschild Homology of Quantum Flag Manifolds and Kähler Forms. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a97/
[1] Akrami S. E., Majid S., “Braided cyclic cocycles and nonassociative geometry”, J. Math. Phys., 45 (2004), 3883–3911, arXiv: math.QA/0406005 | DOI | MR | Zbl
[2] Baez J. C., “Hochschild homology in a braided tensor category”, Trans. Amer. Math. Soc., 344 (1994), 885–906 | DOI | MR | Zbl
[3] Beggs E., Paul Smith S., “Non-commutative complex differential geometry”, J. Geom. Phys., 72 (2013), 7–33, arXiv: 1209.3595 | DOI | MR | Zbl
[4] Borel A., Hirzebruch F., “Characteristic classes and homogeneous spaces. I”, Amer. J. Math., 80 (1958), 458–538 | DOI | MR
[5] Brown K. A., Zhang J. J., “Dualising complexes and twisted Hochschild (co)homology for Noetherian Hopf algebras”, J. Algebra, 320 (2008), 1814–1850, arXiv: math.RA/0603732 | DOI | MR | Zbl
[6] Čap A., Slovák J., Parabolic geometries. I Background and general theory, Mathematical Surveys and Monographs, 154, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl
[7] Connes A., “Noncommutative differential geometry”, Inst. Hautes Études Sci. Publ. Math., 1985, 41–144 | DOI | MR | Zbl
[8] Dolgushev V., “The Van den Bergh duality and the modular symmetry of a Poisson variety”, Selecta Math. (N.S.), 14 (2009), 199–228, arXiv: math.QA/0612288 | DOI | MR | Zbl
[9] Feng P., Tsygan B., “Hochschild and cyclic homology of quantum groups”, Comm. Math. Phys., 140 (1991), 481–521 | DOI | MR | Zbl
[10] Hadfield T., “Twisted cyclic homology of all Podleś quantum spheres”, J. Geom. Phys., 57 (2007), 339–351, arXiv: math.QA/0405243 | DOI | MR | Zbl
[11] Hadfield T., Krähmer U., “Twisted homology of quantum ${\rm SL}(2)$”, $K$-Theory, 34 (2005), 327–360, arXiv: math.QA/0405249 | DOI | MR | Zbl
[12] Hadfield T., Krähmer U., “Braided homology of quantum groups”, J. K-Theory, 4 (2009), 299–332, arXiv: math.QA/0701193 | DOI | MR | Zbl
[13] Heckenberger I., Kolb S., “De Rham complex for quantized irreducible flag manifolds”, J. Algebra, 305 (2006), 704–741, arXiv: math.QA/0307402 | DOI | MR | Zbl
[14] Hochschild G., Kostant B., Rosenberg A., “Differential forms on regular affine algebras”, Trans. Amer. Math. Soc., 102 (1962), 383–408 | DOI | MR | Zbl
[15] Hong J., Kang S. J., Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, Amer. Math. Soc., Providence, RI, 2002 | DOI | MR | Zbl
[16] Huybrechts D., Complex geometry: an introduction, Universitext, Springer-Verlag, Berlin, 2005 | DOI | MR | Zbl
[17] Karoubi M., Homologie cyclique et $K$-théorie, Astérisque, 149, 1987, 147 pp. | MR
[18] Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl
[19] Knapp A. W., Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser Boston, Inc., Boston, MA, 1996 | DOI | MR | Zbl
[20] Kustermans J., Murphy G. J., Tuset L., “Differential calculi over quantum groups and twisted cyclic cocycles”, J. Geom. Phys., 44 (2003), 570–594, arXiv: math.QA/0110199 | DOI | MR | Zbl
[21] Loday J.-L., Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301, 2nd ed., Springer-Verlag, Berlin, 1998 | DOI | MR | Zbl
[22] Matassa M., “Kähler structures on quantum irreducible flag manifolds”, J. Geom. Phys., 145 (2019), 103477, 16 pp., arXiv: 1901.09544 | DOI | MR | Zbl
[23] Matassa M., “Twisted Hochschild homology of quantum flag manifolds: 2-cycles from invariant projections”, J. Algebra Appl. (to appear) , arXiv: 1703.00725 | DOI
[24] Ó Buachalla R., “Noncommutative complex structures on quantum homogeneous spaces”, J. Geom. Phys., 99 (2016), 154–173, arXiv: 1108.2374 | DOI | MR | Zbl
[25] Ó Buachalla R., “Noncommutative Kähler structures on quantum homogeneous spaces”, Adv. Math., 322 (2017), 892–939, arXiv: 1602.08484 | DOI | MR | Zbl
[26] Sepanski M. R., Compact Lie groups, Graduate Texts in Mathematics, 235, Springer, New York, 2007 | DOI | MR | Zbl
[27] Snow D. M., “Homogeneous vector bundles”, Group Actions and Invariant Theory (Montreal, PQ, 1988), CMS Conf. Proc., 10, Amer. Math. Soc., Providence, RI, 1989, 193–205 | DOI | MR
[28] Stokman J. V., Dijkhuizen M. S., “Quantized flag manifolds and irreducible $*$-representations”, Comm. Math. Phys., 203 (1999), 297–324, arXiv: math.QA/9802086 | DOI | MR | Zbl
[29] van den Bergh M., “A relation between Hochschild homology and cohomology for Gorenstein rings”, Proc. Amer. Math. Soc., 126 (1998), 1345–1348 | DOI | MR | Zbl
[30] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl