Differential Calculus of Hochschild Pairs for Infinity-Categories
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we provide a conceptual new construction of the algebraic structure on the pair of the Hochschild cohomology spectrum (cochain complex) and Hochschild homology spectrum, which is analogous to the structure of calculus on a manifold. This algebraic structure is encoded by a two-colored operad introduced by Kontsevich and Soibelman. We prove that for a stable idempotent-complete infinity-category, the pair of its Hochschild cohomology and homology spectra naturally admits the structure of algebra over the operad. Moreover, we prove a generalization to the equivariant context.
Keywords: Hochschild cohomology, Hochschild homology, operad, $\infty$-category.
@article{SIGMA_2020_16_a96,
     author = {Isamu Iwanari},
     title = {Differential {Calculus} of {Hochschild} {Pairs} for {Infinity-Categories}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a96/}
}
TY  - JOUR
AU  - Isamu Iwanari
TI  - Differential Calculus of Hochschild Pairs for Infinity-Categories
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a96/
LA  - en
ID  - SIGMA_2020_16_a96
ER  - 
%0 Journal Article
%A Isamu Iwanari
%T Differential Calculus of Hochschild Pairs for Infinity-Categories
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a96/
%G en
%F SIGMA_2020_16_a96
Isamu Iwanari. Differential Calculus of Hochschild Pairs for Infinity-Categories. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a96/

[1] Armenta M. A., Keller B., “Derived invariance of the Tamarkin–Tsygan calculus of an algebra”, C. R. Math. Acad. Sci. Paris, 357 (2019), 236–240, arXiv: 1811.04440 | DOI | MR | Zbl

[2] Ayala D., Francis J., “Factorization homology of topological manifolds”, J. Topol., 8 (2015), 1045–1084, arXiv: 1206.5522 | DOI | MR | Zbl

[3] Barthel T., May J. P., Riehl E., “Six model structures for DG-modules over DGAs: model category theory in homological action”, New York J. Math., 20 (2014), 1077–1159, arXiv: 1310.1159 | MR | Zbl

[4] Batanin M. A., “The Eckmann–Hilton argument and higher operads”, Adv. Math., 217 (2008), 334–385, arXiv: math.CT/0207281 | DOI | MR | Zbl

[5] Ben-Zvi D., Francis J., Nadler D., “Integral transforms and Drinfeld centers in derived algebraic geometry”, J. Amer. Math. Soc., 23 (2010), 909–966, arXiv: 0805.0157 | DOI | MR | Zbl

[6] Blumberg A. J., Gepner D., Tabuada G., “A universal characterization of higher algebraic $K$-theory”, Geom. Topol., 17 (2013), 733–838, arXiv: 1001.2282 | DOI | MR | Zbl

[7] Blumberg A. J., Gepner D., Tabuada G., “Uniqueness of the multiplicative cyclotomic trace”, Adv. Math., 260 (2014), 191–232, arXiv: 1103.3923 | DOI | MR | Zbl

[8] Blumberg A. J., Mandell M. A., “Localization theorems in topological Hochschild homology and topological cyclic homology”, Geom. Topol., 16 (2012), 1053–1120, arXiv: 0802.3938 | DOI | MR | Zbl

[9] Cohn L., Differential graded categories are $K$-linear stable $\infty$-categories, arXiv: 1308.2587

[10] Connes A., “Cohomologie cyclique et foncteurs ${\rm Ext}^n$”, C. R. Acad. Sci. Paris Sér. I Math., 296 (1983), 953–958 | MR | Zbl

[11] Dolgushev V., Tamarkin D., Tsygan B., Formality of the homotopy calculus algebra of Hochschild (co)chains, arXiv: 0807.5117

[12] Dolgushev V., Tamarkin D., Tsygan B., “Formality theorems for Hochschild complexes and their applications”, Lett. Math. Phys., 90 (2009), 103–136, arXiv: 0901.0069 | DOI | MR | Zbl

[13] Dwyer W. G., Kan D. M., “Function complexes in homotopical algebra”, Topology, 19 (1980), 427–440 | DOI | MR | Zbl

[14] Getzler E., Jones J. D. S., “The cyclic homology of crossed product algebras”, J. Reine Angew. Math., 445 (1993), 161–174 | DOI | MR | Zbl

[15] Hinich V., “Rectification of algebras and modules”, Doc. Math., 20 (2015), 879–926, arXiv: 1311.4130 | DOI | MR | Zbl

[16] Horel G., “Factorization homology and calculus à la Kontsevich Soibelman”, J. Noncommut. Geom., 11 (2017), 703–740, arXiv: 1307.0322 | DOI | MR | Zbl

[17] Hovey M., Shipley B., Smith J., “Symmetric spectra”, J. Amer. Math. Soc., 13 (2000), 149–208, arXiv: math.AT/9801077 | DOI | MR | Zbl

[18] Hoyois M., Homotopy fixed points of the circle action Hochschild hoology, arXiv: 1506.07123

[19] Iwanari I., Kodaira–Spencer morphisms, Hochschild invariants and D-modules, Preprint

[20] Iwanari I., Period mappings for noncommutative algebras, arXiv: 1604.08283

[21] Joyal A., “Quasi-categories and Kan complexes”, J. Pure Appl. Algebra, 175 (2002), 207–222 | DOI | MR | Zbl

[22] Kock J., Toën B., “Simplicial localization of monoidal structures, and a non-linear version of Deligne's conjecture”, Compos. Math., 141 (2005), 253–261, arXiv: math.AT/0304442 | DOI | MR | Zbl

[23] Kontsevich M., Soibelman Y., “Notes on $A_\infty$-algebras, $A_\infty$-categories and non-commutative geometry”, Homological Mirror Symmetry, Lecture Notes in Phys., 757, Springer, Berlin, 2009, 153–219, arXiv: math.RA/0606241 | DOI | MR | Zbl

[24] Loday J.-L., Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl

[25] Lurie J., Higher algebra, Preprint, 2017 http://people.math.harvard.edu/l̃urie/papers/HA.pdf

[26] Lurie J., Rotation invariance in algebraic K-theory, Preprint

[27] Lurie J., Higher topos theory, Annals of Mathematics Studies, 170, Princeton University Press, Princeton, NJ, 2009 | DOI | MR | Zbl

[28] Muro F., “Dwyer–Kan homotopy theory of enriched categories”, J. Topol., 8 (2015), 377–413, arXiv: 1201.1575 | DOI | MR | Zbl

[29] Schwede S., Shipley B., “Stable model categories are categories of modules”, Topology, 42 (2003), 103–153, arXiv: math.AT/0108143 | DOI | MR | Zbl

[30] Schwede S., Shipley B. E., “Algebras and modules in monoidal model categories”, Proc. London Math. Soc., 80 (2000), 491–511, arXiv: math.AT/9801082 | DOI | MR | Zbl

[31] Shipley B., “Symmetric spectra and topological Hochschild homology”, $K$-Theory, 19 (2000), 155–183, arXiv: math.AT/9801079 | DOI | MR | Zbl

[32] Shipley B., “A convenient model category for commutative ring spectra”, Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory, Contemp. Math., 346, Amer. Math. Soc., Providence, RI, 2004, 473–483 | DOI | MR | Zbl

[33] Tabuada G., Topological Hochschild and cyclic homology for differential graded categories, arXiv: 0804.2791

[34] Thomas J., “Kontsevich's Swiss cheese conjecture”, Geom. Topol., 20 (2016), 1–48, arXiv: 1011.1635 | DOI | MR | Zbl