On Abelianity Lines in Elliptic $W$-Algebras
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a systematic derivation of the abelianity conditions for the $q$-deformed $W$-algebras constructed from the elliptic quantum algebra $\mathcal{A}_{q,p}\big(\widehat{\mathfrak{gl}}(N)_{c}\big)$. We identify two sets of conditions on a given critical surface yielding abelianity lines in the moduli space ($p, q, c$). Each line is identified as an intersection of a countable number of critical surfaces obeying diophantine consistency conditions. The corresponding Poisson brackets structures are then computed for which some universal features are described.
Keywords: elliptic quantum algebras, $W$-algebras.
@article{SIGMA_2020_16_a93,
     author = {Jean Avan and Luc Frappat and Eric Ragoucy},
     title = {On {Abelianity} {Lines} in {Elliptic} $W${-Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a93/}
}
TY  - JOUR
AU  - Jean Avan
AU  - Luc Frappat
AU  - Eric Ragoucy
TI  - On Abelianity Lines in Elliptic $W$-Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a93/
LA  - en
ID  - SIGMA_2020_16_a93
ER  - 
%0 Journal Article
%A Jean Avan
%A Luc Frappat
%A Eric Ragoucy
%T On Abelianity Lines in Elliptic $W$-Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a93/
%G en
%F SIGMA_2020_16_a93
Jean Avan; Luc Frappat; Eric Ragoucy. On Abelianity Lines in Elliptic $W$-Algebras. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a93/

[1] Avan J., Frappat L., Ragoucy E., “Deformed Virasoro algebras from elliptic quantum algebras”, Comm. Math. Phys., 354 (2017), 753–773, arXiv: 1607.05050 | DOI | MR | Zbl

[2] Avan J., Frappat L., Ragoucy E., “Dynamical centers for the elliptic quantum algebra ${\mathcal B}_{q,\lambda}\big(\widehat{\mathfrak{gl}}_2\big)_c$”, J. Phys. A: Math. Theor., 50 (2017), 394002, 16 pp., arXiv: 1703.05223 | DOI | MR | Zbl

[3] Avan J., Frappat L., Ragoucy E., “Elliptic deformation of ${\mathcal W}_N$-algebras”, SciPost Phys., 6 (2019), 054, 19 pp., arXiv: 1810.11410 | DOI | MR

[4] Avan J., Frappat L., Rossi M., Sorba P., “Central extensions of classical and quantum $q$-Virasoro algebras”, Phys. Lett. A, 251 (1999), 13–24, arXiv: math.QA/9806065 | DOI | MR | Zbl

[5] Bershtein M., Gonin R., Twisted and non-twisted deformed Virasoro algebra via vertex operators of $U_{q}\big(\widehat{\mathfrak{sl}}_2\big)$, arXiv: 2003.12472

[6] Feigin B., Frenkel E., “Quantum $\mathcal W$-algebras and elliptic algebras”, Comm. Math. Phys., 178 (1996), 653–678, arXiv: q-alg/9508009 | DOI | MR | Zbl

[7] Frenkel E., Reshetikhin N., “Quantum affine algebras and deformations of the Virasoro and ${\mathcal W}$-algebras”, Comm. Math. Phys., 178 (1996), 237–264, arXiv: q-alg/9505025 | DOI | MR | Zbl

[8] Frenkel E., Reshetikhin N., “Deformations of $\mathcal W$-algebras associated to simple Lie algebras”, Comm. Math. Phys., 197 (1998), 1–32, arXiv: q-alg/9708006 | DOI | MR | Zbl

[9] Jimbo M., Shiraishi J., “A coset-type construction for the deformed Virasoro algebra”, Lett. Math. Phys., 43 (1998), 173–185, arXiv: q-alg/9709037 | DOI | MR | Zbl

[10] Kimura T., Pestun V., “Quiver elliptic ${\mathcal W}$-algebras”, Lett. Math. Phys., 108 (2018), 1383–1405, arXiv: 1608.04651 | DOI | MR | Zbl

[11] Kimura T., Pestun V., “Quiver ${\mathcal W}$-algebras”, Lett. Math. Phys., 108 (2018), 1351–1381, arXiv: 1512.08533 | DOI | MR | Zbl

[12] Kojima T., Konno H., “The elliptic algebra $U_{p,q}\big(\widehat{\mathfrak{sl}}_N\big)$ and the Drinfeld realization of the elliptic quantum group $\mathcal{B}_{q,\lambda}\big(\widehat{\mathfrak{sl}}_N\big)$”, Comm. Math. Phys., 239 (2003), 405–447, arXiv: math.QA/0210383 | DOI | MR | Zbl

[13] Kojima T., Konno H., “The elliptic algebra $U_{q,p}\big(\widehat{\mathfrak{sl}}_N\big)$ and the deformation of $W_N$ algebra”, J. Phys. A: Math. Gen., 37 (2004), 371–383, arXiv: math.QA/0307244 | DOI | MR | Zbl

[14] Nieri F., “An elliptic Virasoro symmetry in 6d”, Lett. Math. Phys., 107 (2017), 2147–2187, arXiv: 1511.00574 | DOI | MR | Zbl

[15] Shiraishi J., “Free field constructions for the elliptic algebra ${\mathcal A}_{q,p}\big(\widehat{\mathfrak{sl}}_2\big)$ and Baxter's eight-vertex model”, Internat. J. Modern Phys. A, 19 (2004), 363–380, arXiv: math.QA/0302097 | DOI | MR | Zbl

[16] Shiraishi J., Kubo H., Awata H., Odake S., “A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions”, Lett. Math. Phys., 38 (1996), 33–51, arXiv: q-alg/9507034 | DOI | MR | Zbl