On the Generalized Cluster Algebras of Geometric Type
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop and prove the analogs of some results shown in [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1–52] concerning lower and upper bounds of cluster algebras to the generalized cluster algebras of geometric type. We show that lower bounds coincide with upper bounds under the conditions of acyclicity and coprimality. Consequently, we obtain the standard monomial bases of these generalized cluster algebras. Moreover, in the appendix, we prove that an acyclic generalized cluster algebra is equal to the corresponding generalized upper cluster algebra without the assumption of the existence of coprimality.
Keywords: cluster algebra, generalized cluster algebra, lower bound, upper bound
Mots-clés : standard monomial.
@article{SIGMA_2020_16_a91,
     author = {Liqian Bai and Xueqing Chen and Ming Ding and Fan Xu},
     title = {On the {Generalized} {Cluster} {Algebras} of {Geometric} {Type}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a91/}
}
TY  - JOUR
AU  - Liqian Bai
AU  - Xueqing Chen
AU  - Ming Ding
AU  - Fan Xu
TI  - On the Generalized Cluster Algebras of Geometric Type
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a91/
LA  - en
ID  - SIGMA_2020_16_a91
ER  - 
%0 Journal Article
%A Liqian Bai
%A Xueqing Chen
%A Ming Ding
%A Fan Xu
%T On the Generalized Cluster Algebras of Geometric Type
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a91/
%G en
%F SIGMA_2020_16_a91
Liqian Bai; Xueqing Chen; Ming Ding; Fan Xu. On the Generalized Cluster Algebras of Geometric Type. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a91/

[1] Benito A., Muller G., Rajchgot J., Smith K. E., “Singularities of locally acyclic cluster algebras”, Algebra Number Theory, 9 (2015), 913–936, arXiv: 1404.4399 | DOI | MR | Zbl

[2] Berenstein A., Fomin S., Zelevinsky A., “Cluster algebras. III Upper bounds and double Bruhat cells”, Duke Math. J., 126 (2005), 1–52, arXiv: math.RT/0305434 | DOI | MR | Zbl

[3] Bucher E., Machacek J., Shapiro M., “Upper cluster algebras and choice of ground ring”, Sci. China Math., 62 (2019), 1257–1266, arXiv: 1802.04835 | DOI | MR | Zbl

[4] Chekhov L., Shapiro M., “Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables”, Int. Math. Res. Not., 2014 (2014), 2746–2772, arXiv: 1111.3963 | DOI | MR | Zbl

[5] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl

[6] Fomin S., Zelevinsky A., “Cluster algebras. II Finite type classification”, Invent. Math., 154 (2003), 63–121, arXiv: math.RA/0208229 | DOI | MR | Zbl

[7] Gekhtman M., Shapiro M., Vainshtein A., “Drinfeld double of ${\rm GL}_n$ and generalized cluster structures”, Proc. Lond. Math. Soc., 116 (2018), 429–484, arXiv: 1605.05705 | DOI | MR | Zbl

[8] Gross M., Hacking P., Keel S., “Birational geometry of cluster algebras”, Algebr. Geom., 2 (2015), 137–175, arXiv: 1309.2573 | DOI | MR | Zbl

[9] Lee K., Li L., Mills M. R., “A combinatorial formula for certain elements of upper cluster algebras”, SIGMA, 11 (2015), 049, 24 pp., arXiv: 1409.8177 | DOI | MR | Zbl

[10] Matherne J. P., Muller G., “Computing upper cluster algebras”, Int. Math. Res. Not., 2015 (2015), 3121–3149, arXiv: 1307.0579 | DOI | MR | Zbl

[11] Muller G., “Locally acyclic cluster algebras”, Adv. Math., 233 (2013), 207–247, arXiv: 1111.4468 | DOI | MR | Zbl

[12] Muller G., “${\mathcal A}={\mathcal U}$ for locally acyclic cluster algebras”, SIGMA, 10 (2014), 094, 8 pp., arXiv: 1308.1141 | DOI | MR | Zbl

[13] Nakanishi T., “Structure of seeds in generalized cluster algebras”, Pacific J. Math., 277 (2015), 201–217, arXiv: 1409.5967 | DOI | MR

[14] Plamondon P.-G., “Generic bases for cluster algebras from the cluster category”, Int. Math. Res. Not., 2013 (2013), 2368–2420, arXiv: 1111.4431 | DOI | MR | Zbl