Mots-clés : standard monomial.
@article{SIGMA_2020_16_a91,
author = {Liqian Bai and Xueqing Chen and Ming Ding and Fan Xu},
title = {On the {Generalized} {Cluster} {Algebras} of {Geometric} {Type}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a91/}
}
TY - JOUR AU - Liqian Bai AU - Xueqing Chen AU - Ming Ding AU - Fan Xu TI - On the Generalized Cluster Algebras of Geometric Type JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a91/ LA - en ID - SIGMA_2020_16_a91 ER -
Liqian Bai; Xueqing Chen; Ming Ding; Fan Xu. On the Generalized Cluster Algebras of Geometric Type. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a91/
[1] Benito A., Muller G., Rajchgot J., Smith K. E., “Singularities of locally acyclic cluster algebras”, Algebra Number Theory, 9 (2015), 913–936, arXiv: 1404.4399 | DOI | MR | Zbl
[2] Berenstein A., Fomin S., Zelevinsky A., “Cluster algebras. III Upper bounds and double Bruhat cells”, Duke Math. J., 126 (2005), 1–52, arXiv: math.RT/0305434 | DOI | MR | Zbl
[3] Bucher E., Machacek J., Shapiro M., “Upper cluster algebras and choice of ground ring”, Sci. China Math., 62 (2019), 1257–1266, arXiv: 1802.04835 | DOI | MR | Zbl
[4] Chekhov L., Shapiro M., “Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables”, Int. Math. Res. Not., 2014 (2014), 2746–2772, arXiv: 1111.3963 | DOI | MR | Zbl
[5] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl
[6] Fomin S., Zelevinsky A., “Cluster algebras. II Finite type classification”, Invent. Math., 154 (2003), 63–121, arXiv: math.RA/0208229 | DOI | MR | Zbl
[7] Gekhtman M., Shapiro M., Vainshtein A., “Drinfeld double of ${\rm GL}_n$ and generalized cluster structures”, Proc. Lond. Math. Soc., 116 (2018), 429–484, arXiv: 1605.05705 | DOI | MR | Zbl
[8] Gross M., Hacking P., Keel S., “Birational geometry of cluster algebras”, Algebr. Geom., 2 (2015), 137–175, arXiv: 1309.2573 | DOI | MR | Zbl
[9] Lee K., Li L., Mills M. R., “A combinatorial formula for certain elements of upper cluster algebras”, SIGMA, 11 (2015), 049, 24 pp., arXiv: 1409.8177 | DOI | MR | Zbl
[10] Matherne J. P., Muller G., “Computing upper cluster algebras”, Int. Math. Res. Not., 2015 (2015), 3121–3149, arXiv: 1307.0579 | DOI | MR | Zbl
[11] Muller G., “Locally acyclic cluster algebras”, Adv. Math., 233 (2013), 207–247, arXiv: 1111.4468 | DOI | MR | Zbl
[12] Muller G., “${\mathcal A}={\mathcal U}$ for locally acyclic cluster algebras”, SIGMA, 10 (2014), 094, 8 pp., arXiv: 1308.1141 | DOI | MR | Zbl
[13] Nakanishi T., “Structure of seeds in generalized cluster algebras”, Pacific J. Math., 277 (2015), 201–217, arXiv: 1409.5967 | DOI | MR
[14] Plamondon P.-G., “Generic bases for cluster algebras from the cluster category”, Int. Math. Res. Not., 2013 (2013), 2368–2420, arXiv: 1111.4431 | DOI | MR | Zbl