The Causal Action in Minkowski Space and Surface Layer Integrals
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Lagrangian of the causal action principle is computed in Minkowski space for Dirac wave functions interacting with classical electromagnetism and linearized gravity in the limiting case when the ultraviolet cutoff is removed. Various surface layer integrals are computed in this limiting case.
Keywords: surface layer integral, special relativity, Dirac field, Maxwell field.
Mots-clés : causal action
@article{SIGMA_2020_16_a90,
     author = {Felix Finster},
     title = {The {Causal} {Action} in {Minkowski} {Space} and {Surface} {Layer} {Integrals}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a90/}
}
TY  - JOUR
AU  - Felix Finster
TI  - The Causal Action in Minkowski Space and Surface Layer Integrals
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a90/
LA  - en
ID  - SIGMA_2020_16_a90
ER  - 
%0 Journal Article
%A Felix Finster
%T The Causal Action in Minkowski Space and Surface Layer Integrals
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a90/
%G en
%F SIGMA_2020_16_a90
Felix Finster. The Causal Action in Minkowski Space and Surface Layer Integrals. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a90/

[1] Bäuml L., Finster F., Schiefeneder D., von der Mosel H., “Singular support of minimizers of the causal variational principle on the sphere”, Calc. Var. Partial Differential Equations, 58 (2019), 205, 27 pp., arXiv: 1808.09754 | DOI | MR | Zbl

[2] Bernard Y., Finster F., “On the structure of minimizers of causal variational principles in the non-compact and equivariant settings”, Adv. Calc. Var., 7 (2014), 27–57, arXiv: 1205.0403 | DOI | MR | Zbl

[3] Bogachev V. I., Measure theory, v. I, Springer-Verlag, Berlin, 2007 | DOI | MR | Zbl

[4] Curiel E., Finster F., Isidro J. M., “Two-dimensional area and matter flux in the theory of causal fermion systems”, Internat. J. Modern Phys. D, 29 (2020), 2050098, 23 pp., arXiv: 1910.06161 | DOI

[5] Deligne P., Freed D. S., “Classical field theory”, Quantum Fields and Strings: a Course for Mathematicians (Princeton, NJ, 1996/1997), v. 1, 2, Amer. Math. Soc., Providence, RI, 1999, 137–225 | MR | Zbl

[6] Finster F., Light-cone expansion of the Dirac sea with light cone integrals, arXiv: funct-an/9707003

[7] Finster F., “Light-cone expansion of the Dirac sea in the presence of chiral and scalar potentials”, J. Math. Phys., 41 (2000), 6689–6746, arXiv: hep-th/9809019 | DOI | MR | Zbl

[8] Finster F., The principle of the fermionic projector, AMS/IP Studies in Advanced Mathematics, 35, Amer. Math. Soc., Providence, RI, 2006, arXiv: hep-th/0001048 | DOI | MR | Zbl

[9] Finster F., “A variational principle in discrete space-time: existence of minimizers”, Calc. Var. Partial Differential Equations, 29 (2007), 431–453, arXiv: math-ph/0503069 | DOI | MR | Zbl

[10] Finster F., “On the regularized fermionic projector of the vacuum”, J. Math. Phys., 49 (2008), 032304, 60 pp., arXiv: math-ph/0612003 | DOI | MR | Zbl

[11] Finster F., “Causal variational principles on measure spaces”, J. Reine Angew. Math., 646 (2010), 141–194, arXiv: 0811.2666 | DOI | MR | Zbl

[12] Finster F., “Perturbative quantum field theory in the framework of the fermionic projector”, J. Math. Phys., 55 (2014), 042301, 53 pp., arXiv: 1310.4121 | DOI | MR | Zbl

[13] Finster F., “The continuum limit of causal fermion systems. From Planck scale structures to macroscopic physics”, Fundamental Theories of Physics, 186, Springer, Cham, 2016, arXiv: 1605.04742 | DOI | MR | Zbl

[14] Finster F., “Causal Fermion systems: a primer for Lorentzian geometers”, J. Phys. Conf. Ser., 968 (2018), 012004, 14 pp., arXiv: 1709.04781 | DOI | MR

[15] Finster F., “Positive functionals induced by minimizers of causal variational principles”, Vietnam J. Math., 47 (2019), 23–37, arXiv: 1708.07817 | DOI | MR | Zbl

[16] Finster F., “Perturbation theory for critical points of causal variational principles”, Adv. Theor. Math. Phys., 24 (2020), 563–619, arXiv: 1703.05059 | DOI | MR

[17] Finster F., Hoch S., “An action principle for the masses of Dirac particles”, Adv. Theor. Math. Phys., 13 (2009), 1653–1711, arXiv: 0712.0678 | DOI | MR | Zbl

[18] Finster F., Jokel M., “Causal fermion systems: an elementary introduction to physical ideas and mathematical concepts”, Progress and Visions in Quantum Theory in View of Gravity, eds. F. Finster, D. Giulini, J. Kleiner, J. Tolksdorf, Birkhäuser, Cham, 2020, 63–92, arXiv: 1908.08451 | DOI

[19] Finster F., Kamran N., “Complex structures on jet spaces and bosonic Fock space dynamics for causal variational principles”, Pure Appl. Math. Q. (to appear)

[20] Finster F., Kamran N., Fermionic Fock space dynamics and quantum states for causal fermion systems, in preparation

[21] Finster F., Kleiner J., “Causal fermion systems as a candidate for a unified physical theory”, J. Phys. Conf. Ser., 626 (2015), 012020, 17 pp., arXiv: 1502.03587 | DOI

[22] Finster F., Kleiner J., “Noether-like theorems for causal variational principles”, Calc. Var. Partial Differential Equations, 55 (2016), 35, 41 pp., arXiv: 1506.09076 | DOI | MR | Zbl

[23] Finster F., Kleiner J., “A Hamiltonian formulation of causal variational principles”, Calc. Var. Partial Differential Equations, 56 (2017), 73, 33 pp., arXiv: 1612.07192 | DOI | MR | Zbl

[24] Finster F., Kleiner J., “A class of conserved surface layer integrals for causal variational principles”, Calc. Var. Partial Differential Equations, 58 (2019), 38, 34 pp., arXiv: 1801.08715 | DOI | MR | Zbl

[25] Finster F., Kleiner J., Treude J. H., An introduction to the fermionic projector and causal fermion systems, in preparation https://causal-fermion-system.com/intro-public.pdf

[26] Finster F., Schiefeneder D., “On the support of minimizers of causal variational principles”, Arch. Ration. Mech. Anal., 210 (2013), 321–364, arXiv: 1012.1589 | DOI | MR | Zbl

[27] Finster F., Tolksdorf J., “Perturbative description of the fermionic projector: normalization, causality, and Furry's theorem”, J. Math. Phys., 55 (2014), 052301, 31 pp., arXiv: 1012.1589 | DOI | MR | Zbl

[28] John F., Partial differential equations, Applied Mathematical Sciences, 1, 4th ed., Springer-Verlag, New York, 1991 | DOI | MR

[29] The theory of causal fermion systems, https://www.causal-fermion-system.com

[30] Weinberg S., The quantum theory of fields, v. I, Foundations, Cambridge University Press, Cambridge, 1996 | DOI | MR