@article{SIGMA_2020_16_a9,
author = {Laura Colmenarejo and Charles F. Dunkl},
title = {Singular {Nonsymmetric} {Macdonald} {Polynomials} and {Quasistaircases}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a9/}
}
Laura Colmenarejo; Charles F. Dunkl. Singular Nonsymmetric Macdonald Polynomials and Quasistaircases. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a9/
[1] Baker T. H., Forrester P. J., “A $q$-analogue of the type $A$ Dunkl operator and integral kernel”, Int. Math. Res. Not., 1997 (1997), 667–686 | DOI | MR | Zbl
[2] Colmenarejo L., Dunkl C. F., Luque J.-G., Connections between vector-valued and highest weight Jack and Macdonald polynomials, arXiv: 1907.04631
[3] Dipper R., James G., “Representations of Hecke algebras of general linear groups”, Proc. London Math. Soc., 52 (1986), 20–52 | DOI | MR | Zbl
[4] Dunkl C. F., “Singular polynomials for the symmetric groups”, Int. Math. Res. Not., 2004 (2004), 3607–3635, arXiv: math.RT/0403277 | DOI | MR | Zbl
[5] Dunkl C. F., “Singular polynomials and modules for the symmetric groups”, Int. Math. Res. Not., 2005 (2005), 2409–2436, arXiv: math.RT/0501494 | DOI | MR | Zbl
[6] Dunkl C. F., “Hook-lengths and pairs of compositions”, J. Comput. Appl. Math., 199 (2007), 39–47, arXiv: math.CO/0410466 | DOI | MR | Zbl
[7] Dunkl C. F., Luque J.-G., “Vector-valued Jack polynomials from scratch”, SIGMA, 7 (2011), 026, 48 pp., arXiv: 1009.2366 | DOI | MR | Zbl
[8] Dunkl C. F., Luque J.-G., “Vector valued Macdonald polynomials”, Sém. Lothar. Combin., 66 (2012), B66b, 68 pp., arXiv: 1106.0875 | MR
[9] Dunkl C. F., Luque J.-G., “Clustering properties of rectangular Macdonald polynomials”, Ann. Inst. Henri Poincaré D, 2 (2015), 263–307, arXiv: 1204.5117 | DOI | MR | Zbl
[10] Jolicoeur Th., Luque J.-G., “Highest weight Macdonald and Jack polynomials”, J. Phys. A: Math. Theor., 44 (2011), 055204, 21 pp., arXiv: 1003.4858 | DOI | MR | Zbl
[11] Knop F., Sahi S., “A recursion and a combinatorial formula for Jack polynomials”, Invent. Math., 128 (1997), 9–22, arXiv: q-alg/9610016 | DOI | MR | Zbl
[12] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR
[13] Stanley R. P., Enumerative combinatorics, v. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl