Singular Nonsymmetric Macdonald Polynomials and Quasistaircases
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Singular nonsymmetric Macdonald polynomials are constructed by use of the representation theory of the Hecke algebras of the symmetric groups. These polynomials are labeled by quasistaircase partitions and are associated to special parameter values $(q,t)$. For $N$ variables, there are singular polynomials for any pair of positive integers $m$ and $n$, with $2\leq n\leq N$, and parameters values $(q,t)$ satisfying $q^{a}t^{b}=1$ exactly when $a=rm$ and $b=rn$, for some integer $r$. The coefficients of nonsymmetric Macdonald polynomials with respect to the basis of monomials $\big\{ x^{\alpha}\big\}$ are rational functions of $q$ and $t$. In this paper, we present the construction of subspaces of singular nonsymmetric Macdonald polynomials specialized to particular values of $(q,t)$. The key part of this construction is to show the coefficients have no poles at the special values of $(q,t)$. Moreover, this subspace of singular Macdonald polynomials for the special values of the parameters is an irreducible module for the Hecke algebra of type $A_{N-1}$.
Keywords: nonsymmetric Macdonald polynomials, Dunkl operators, Hecke algebra, critical pairs.
@article{SIGMA_2020_16_a9,
     author = {Laura Colmenarejo and Charles F. Dunkl},
     title = {Singular {Nonsymmetric} {Macdonald} {Polynomials} and {Quasistaircases}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a9/}
}
TY  - JOUR
AU  - Laura Colmenarejo
AU  - Charles F. Dunkl
TI  - Singular Nonsymmetric Macdonald Polynomials and Quasistaircases
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a9/
LA  - en
ID  - SIGMA_2020_16_a9
ER  - 
%0 Journal Article
%A Laura Colmenarejo
%A Charles F. Dunkl
%T Singular Nonsymmetric Macdonald Polynomials and Quasistaircases
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a9/
%G en
%F SIGMA_2020_16_a9
Laura Colmenarejo; Charles F. Dunkl. Singular Nonsymmetric Macdonald Polynomials and Quasistaircases. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a9/

[1] Baker T. H., Forrester P. J., “A $q$-analogue of the type $A$ Dunkl operator and integral kernel”, Int. Math. Res. Not., 1997 (1997), 667–686 | DOI | MR | Zbl

[2] Colmenarejo L., Dunkl C. F., Luque J.-G., Connections between vector-valued and highest weight Jack and Macdonald polynomials, arXiv: 1907.04631

[3] Dipper R., James G., “Representations of Hecke algebras of general linear groups”, Proc. London Math. Soc., 52 (1986), 20–52 | DOI | MR | Zbl

[4] Dunkl C. F., “Singular polynomials for the symmetric groups”, Int. Math. Res. Not., 2004 (2004), 3607–3635, arXiv: math.RT/0403277 | DOI | MR | Zbl

[5] Dunkl C. F., “Singular polynomials and modules for the symmetric groups”, Int. Math. Res. Not., 2005 (2005), 2409–2436, arXiv: math.RT/0501494 | DOI | MR | Zbl

[6] Dunkl C. F., “Hook-lengths and pairs of compositions”, J. Comput. Appl. Math., 199 (2007), 39–47, arXiv: math.CO/0410466 | DOI | MR | Zbl

[7] Dunkl C. F., Luque J.-G., “Vector-valued Jack polynomials from scratch”, SIGMA, 7 (2011), 026, 48 pp., arXiv: 1009.2366 | DOI | MR | Zbl

[8] Dunkl C. F., Luque J.-G., “Vector valued Macdonald polynomials”, Sém. Lothar. Combin., 66 (2012), B66b, 68 pp., arXiv: 1106.0875 | MR

[9] Dunkl C. F., Luque J.-G., “Clustering properties of rectangular Macdonald polynomials”, Ann. Inst. Henri Poincaré D, 2 (2015), 263–307, arXiv: 1204.5117 | DOI | MR | Zbl

[10] Jolicoeur Th., Luque J.-G., “Highest weight Macdonald and Jack polynomials”, J. Phys. A: Math. Theor., 44 (2011), 055204, 21 pp., arXiv: 1003.4858 | DOI | MR | Zbl

[11] Knop F., Sahi S., “A recursion and a combinatorial formula for Jack polynomials”, Invent. Math., 128 (1997), 9–22, arXiv: q-alg/9610016 | DOI | MR | Zbl

[12] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR

[13] Stanley R. P., Enumerative combinatorics, v. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl