About Bounds for Eigenvalues of the Laplacian with Density
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $M$ denote a compact, connected Riemannian manifold of dimension $n\in\mathbb{N}$. We assume that $ M$ has a smooth and connected boundary. Denote by $g$ and $\mathrm{d}v_g$ respectively, the Riemannian metric on $M$ and the associated volume element. Let $\Delta$ be the Laplace operator on $M$ equipped with the weighted volume form $\mathrm{d}m:= \mathrm{e}^{-h}\,\mathrm{d}v_g$. We are interested in the operator $L_h\cdot:=\mathrm{e}^{-h(\alpha-1)}(\Delta\cdot +\alpha g(\nabla h,\nabla\cdot))$, where $\alpha > 1$ and $h\in C^2(M)$ are given. The main result in this paper states about the existence of upper bounds for the eigenvalues of the weighted Laplacian $L_h$ with the Neumann boundary condition if the boundary is non-empty.
Keywords: eigenvalue, Laplacian, density, Cheeger inequality, upper bounds.
@article{SIGMA_2020_16_a89,
     author = {A{\"\i}ssatou Moss\`ele Ndiaye},
     title = {About {Bounds} for {Eigenvalues} of the {Laplacian} with {Density}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a89/}
}
TY  - JOUR
AU  - Aïssatou Mossèle Ndiaye
TI  - About Bounds for Eigenvalues of the Laplacian with Density
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a89/
LA  - en
ID  - SIGMA_2020_16_a89
ER  - 
%0 Journal Article
%A Aïssatou Mossèle Ndiaye
%T About Bounds for Eigenvalues of the Laplacian with Density
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a89/
%G en
%F SIGMA_2020_16_a89
Aïssatou Mossèle Ndiaye. About Bounds for Eigenvalues of the Laplacian with Density. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a89/

[1] Berger M., A panoramic view of Riemannian geometry, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl

[2] Blacker C., Seto S., “First eigenvalue of the $p$-Laplacian on Kähler manifolds”, Proc. Amer. Math. Soc., 147 (2019), 2197–2206, arXiv: 1804.10876 | DOI | MR | Zbl

[3] Bochner S., “Vector fields and Ricci curvature”, Bull. Amer. Math. Soc., 52 (1946), 776–797 | DOI | MR | Zbl

[4] Colbois B., El Soufi A., “Spectrum of the Laplacian with weights”, Ann. Global Anal. Geom., 55 (2019), 149–180, arXiv: 1606.04095 | DOI | MR | Zbl

[5] Colbois B., El Soufi A., Savo A., “Eigenvalues of the Laplacian on a compact manifold with density”, Comm. Anal. Geom., 23 (2015), 639–670, arXiv: 1310.1490 | DOI | MR | Zbl

[6] Du F., Bezerra A. C., “Estimates for eigenvalues of a system of elliptic equations with drift and of bi-drifting Laplacian”, Commun. Pure Appl. Anal., 16 (2017), 475–491 | DOI | MR | Zbl

[7] Du F., Mao J., Wang Q., Wu C., “Eigenvalue inequalities for the buckling problem of the drifting Laplacian on Ricci solitons”, J. Differential Equations, 260 (2016), 5533–5564 | DOI | MR | Zbl

[8] Helffer B., Nier F., Hypoelliptic estimates and spectral theory for Fokker–Planck operators and Witten Laplacians, Lecture Notes in Math., 1862, Springer-Verlag, Berlin, 2005 | DOI | MR | Zbl

[9] Huang G., Zhang C., Zhang J., “Liouville-type theorem for the drifting Laplacian operator”, Arch. Math. (Basel), 96 (2011), 379–385 | DOI | MR | Zbl

[10] Kouzayha S., Pétiard L., Eigenvalues of the Laplacian with density, arXiv: 1908.05051

[11] Li X.-D., “Perelman's entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry–Emery Ricci curvature”, Math. Ann., 353 (2012), 403–437 | DOI | MR | Zbl

[12] Lu Z., Rowlett J., “Eigenvalues of collapsing domains and drift Laplacians”, Math. Res. Lett., 19 (2012), 627–648, arXiv: 1003.0191 | DOI | MR | Zbl

[13] Ma L., Liu B., “Convexity of the first eigenfunction of the drifting Laplacian operator and its applications”, New York J. Math., 14 (2008), 393–401 | MR | Zbl

[14] Xia C., Xu H., “Inequalities for eigenvalues of the drifting Laplacian on Riemannian manifolds”, Ann. Global Anal. Geom., 45 (2014), 155–166 | DOI | MR | Zbl