Uniform Lower Bound for Intersection Numbers of $\psi$-Classes
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We approximate intersection numbers $\big\langle \psi_1^{d_1}\cdots \psi_n^{d_n}\big\rangle_{g,n}$ on Deligne–Mumford's moduli space $\overline{\mathcal{M}}_{g,n}$ of genus $g$ stable complex curves with $n$ marked points by certain closed-form expressions in $d_1,\dots,d_n$. Conjecturally, these approximations become asymptotically exact uniformly in $d_i$ when $g\to\infty$ and $n$ remains bounded or grows slowly. In this note we prove a lower bound for the intersection numbers in terms of the above-mentioned approximating expressions multiplied by an explicit factor $\lambda(g,n)$, which tends to $1$ when $g\to\infty$ and $d_1+\dots+d_{n-2}=o(g)$.
Keywords: intersection numbers, $\psi$-classes, Witten–Kontsevich correlators, moduli space of curves, large genus asymptotics.
@article{SIGMA_2020_16_a85,
     author = {Vincent Delecroix and \'Elise Goujard and Peter Zograf and Anton Zorich},
     title = {Uniform {Lower} {Bound} for {Intersection} {Numbers} of $\psi${-Classes}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a85/}
}
TY  - JOUR
AU  - Vincent Delecroix
AU  - Élise Goujard
AU  - Peter Zograf
AU  - Anton Zorich
TI  - Uniform Lower Bound for Intersection Numbers of $\psi$-Classes
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a85/
LA  - en
ID  - SIGMA_2020_16_a85
ER  - 
%0 Journal Article
%A Vincent Delecroix
%A Élise Goujard
%A Peter Zograf
%A Anton Zorich
%T Uniform Lower Bound for Intersection Numbers of $\psi$-Classes
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a85/
%G en
%F SIGMA_2020_16_a85
Vincent Delecroix; Élise Goujard; Peter Zograf; Anton Zorich. Uniform Lower Bound for Intersection Numbers of $\psi$-Classes. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a85/

[1] Aggarwal A., “Large genus asymptotics for Siegel–Veech constants”, Geom. Funct. Anal., 29 (2019), 1295–1324 | DOI | MR | Zbl

[2] Aggarwal A., “Large genus asymptotics for volumes of strata of abelian differentials”, J. Amer. Math. Soc. (to appear) | DOI | MR

[3] Aggarwal A., Large genus asymptotics for intersection numbers and principal strata volumes of quadratic differentials, arXiv: 2004.05042

[4] Aggarwal A., Delecroix V., Goujard É., Zograf P., Zorich A., “Conjectural large genus asymptotics of Masur–Veech volumes and of area Siegel–Veech constants of strata of quadratic differentials”, Arnold Math. J., 6 (2020), 149–161, arXiv: 1912.11702 | DOI | MR | Zbl

[5] Chen D., Möller M., Sauvaget A., Masur–Veech volumes and intersection theory: the principal strata of quadratic differentials (with an appendix by G. Borot, A. Giacchetto, D. Lewanski), arXiv: 1912.02267

[6] Chen D., Möller M., Sauvaget A., Zagier D., “Masur–Veech volumes and intersection theory on moduli spaces of abelian differentials”, Invent. Math. (to appear) | DOI | MR

[7] Delecroix V., Goujard É., Zograf P., Zorich A., Masur–Veech volumes, frequencies of simple closed geodesics and intersection numbers of moduli spaces of curves, arXiv: 1908.08611 | MR

[8] Delecroix V., Goujard É., Zograf P., Zorich A., Large genus asymptotic geometry of random square-tiled surfaces and of random multicurves, arXiv: 2007.04740

[9] Dijkgraaf R., “Intersection theory, integrable hierarchies and topological field theory”, New Symmetry Principles in Quantum Field Theory (Cargèse, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 295, Plenum, New York, 1992, 95–158, arXiv: hep-th/9201003 | MR | Zbl

[10] Dijkgraaf R., Verlinde H., Verlinde E., “Topological strings in $d1$”, Nuclear Phys. B, 352 (1991), 59–86 | DOI | MR

[11] Eskin A., Okounkov A., “Pillowcases and quasimodular forms”, Algebraic Geometry and Number Theory, Progr. Math., 253, Birkhäuser Boston, 2006, Boston, MA, arXiv: math.DS/0505545 | DOI | MR

[12] Eskin A., Zorich A., “Volumes of strata of Abelian differentials and Siegel–Veech constants in large genera”, Arnold Math. J., 1 (2015), 481–488, arXiv: 1507.05296 | DOI | MR | Zbl

[13] Goujard É., “Volumes of strata of moduli spaces of quadratic differentials: getting explicit values”, Ann. Inst. Fourier (Grenoble), 66 (2016), 2203–2251, arXiv: 1501.01611 | DOI | MR | Zbl

[14] Kazarian M., “Recursion for Masur–Veech volumes of moduli spaces of quadratic differentials”, J. Inst. Math. Jussieu (to appear)

[15] Kazarian M., Lando S., “An algebro-geometric proof of Witten's conjecture”, J. Amer. Math. Soc., 20 (2007), 1079–1089, arXiv: math.AG/0601760 | DOI | MR | Zbl

[16] Kontsevich M., “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147 (1992), 1–23 | DOI | MR | Zbl

[17] Liu K., Xu H., “A remark on Mirzakhani's asymptotic formulae”, Asian J. Math., 18 (2014), 29–52, arXiv: 1103.5136 | DOI | MR | Zbl

[18] Mirzakhani M., “Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces”, Invent. Math., 167 (2007), 179–222 | DOI | MR | Zbl

[19] Mirzakhani M., “Weil–Petersson volumes and intersection theory on the moduli space of curves”, J. Amer. Math. Soc., 20 (2007), 1–23 | DOI | MR | Zbl

[20] Okounkov A., Pandharipande R., “Gromov–Witten theory, Hurwitz numbers, and matrix models”, Algebraic Geometry (Seattle, 2005), v. 1, Proc. Sympos. Pure Math., 80, Amer. Math. Soc., Providence, RI, 2009, 325–414, arXiv: math.AG/0101147 | DOI | MR | Zbl

[21] Witten E., “Two-dimensional gravity and intersection theory on moduli space”, Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh University, Bethlehem, PA, 1991, 243–310 | DOI | MR

[22] Yang D., Zagier D., Zhang Y., Masur–Veech volumes of quadratic differentials and their asymptotics, arXiv: 2005.02275 | MR

[23] Zograf P. G., “An explicit formula for Witten's 2-correlators”, J. Math. Sci., 240 (2019), 535–538 | DOI | MR | Zbl