@article{SIGMA_2020_16_a83,
author = {Ayumu Hoshino and Jun'ichi Shiraishi},
title = {Branching {Rules} for {Koornwinder} {Polynomials} with {One} {Column} {Diagrams} and {Matrix} {Inversions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a83/}
}
TY - JOUR AU - Ayumu Hoshino AU - Jun'ichi Shiraishi TI - Branching Rules for Koornwinder Polynomials with One Column Diagrams and Matrix Inversions JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a83/ LA - en ID - SIGMA_2020_16_a83 ER -
%0 Journal Article %A Ayumu Hoshino %A Jun'ichi Shiraishi %T Branching Rules for Koornwinder Polynomials with One Column Diagrams and Matrix Inversions %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a83/ %G en %F SIGMA_2020_16_a83
Ayumu Hoshino; Jun'ichi Shiraishi. Branching Rules for Koornwinder Polynomials with One Column Diagrams and Matrix Inversions. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a83/
[1] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., 54, 1985, iv+55 pp. | DOI | MR
[2] Braverman A., Finkelberg M., Shiraishi J., “Macdonald polynomials, Laumon spaces and perverse coherent sheaves”, Perspectives in Representation Theory, Contemp. Math., 610, Amer. Math. Soc., Providence, RI, 2014, 23–41, arXiv: 1206.3131 | DOI | MR | Zbl
[3] Bressoud D. M., “A matrix inverse”, Proc. Amer. Math. Soc., 88 (1983), 446–448 | DOI | MR | Zbl
[4] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[5] Hoshino A., Noumi M., Shiraishi J., “Some transformation formulas associated with Askey–Wilson polynomials and Lassalle's formulas for Macdonald–Koornwinder polynomials”, Mosc. Math. J., 15 (2015), 293–318, arXiv: 1406.1628 | DOI | MR | Zbl
[6] Hoshino A., Shiraishi J., “Macdonald polynomials of type $C_n$ with one-column diagrams and deformed Catalan numbers”, SIGMA, 14 (2018), 101, 33 pp., arXiv: 1801.09939 | DOI | MR | Zbl
[7] Koornwinder T. H., “Askey–Wilson polynomials for root systems of type $BC$”, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., 138, Amer. Math. Soc., Providence, RI, 1992, 189–204 | DOI | MR | Zbl
[8] Lassalle M., “Some conjectures for Macdonald polynomials of type $B$, $C$, $D$”, Sém. Lothar. Combin., 52 (2004), B52h, 24 pp., arXiv: math.CO/0503149 | MR | Zbl
[9] Macdonald I. G., “Orthogonal polynomials associated with root systems”, Sém. Lothar. Combin., 45 (2000), B45a, 40 pp., arXiv: math.QA/0011046 | MR | Zbl
[10] Noumi M., Shiraishi J., “A direct approach to the bispectral problem for the Ruijsenaars–Macdonald $q$-difference operators”, arXiv: 1206.5364 | MR
[11] Rains E. M., Warnaar S. O., “Bounded Littlewood identities”, Mem. Amer. Math. Soc. (to appear) | MR
[12] Stokman J. V., “Macdonald–Koornwinder polynomials”, Multivariable Special Functions, eds. T. H. Koornwinder, J.V. Stokman, Cambridge University Press, Cambridge (to appear) | Zbl