On Products of Delta Distributions and Resultants
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove an identity in integral geometry, showing that if $P_x$ and $Q_x$ are two polynomials, $\int \mathrm{d}x\, \delta(P_x) \otimes \delta(Q_x)$ is proportional to $\delta(R)$ where $R$ is the resultant of $P_x$ and $Q_x$.
Keywords: measures and distributions, integral geometry.
@article{SIGMA_2020_16_a82,
     author = {Michel Bauer and Jean-Bernard Zuber},
     title = {On {Products} of {Delta} {Distributions} and {Resultants}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a82/}
}
TY  - JOUR
AU  - Michel Bauer
AU  - Jean-Bernard Zuber
TI  - On Products of Delta Distributions and Resultants
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a82/
LA  - en
ID  - SIGMA_2020_16_a82
ER  - 
%0 Journal Article
%A Michel Bauer
%A Jean-Bernard Zuber
%T On Products of Delta Distributions and Resultants
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a82/
%G en
%F SIGMA_2020_16_a82
Michel Bauer; Jean-Bernard Zuber. On Products of Delta Distributions and Resultants. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a82/

[1] Coquereaux R., Zuber J.-B., “The Horn problem for real symmetric and quaternionic self-dual matrices”, SIGMA, 15 (2019), 029, 34 pp. | DOI | MR | Zbl

[2] Gelfand I. M., Shilov G. E., Generalized functions, v. I, Properties and operations, Academic Press, New York – London, 1964 | MR

[3] Hörmander L., The analysis of linear partial differential operators, v. I, Grundlehren der Mathematischen Wissenschaften, 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl