Mots-clés : equivalence relations
@article{SIGMA_2020_16_a81,
author = {Jens Kaad},
title = {On the {Unbounded} {Picture} of $KK${-Theory}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a81/}
}
Jens Kaad. On the Unbounded Picture of $KK$-Theory. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a81/
[1] Atiyah M. F., “Global theory of elliptic operators”, Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969), University of Tokyo Press, Tokyo, 1970, 21–30 | MR
[2] Baaj S., Julg P., “Théorie bivariante de Kasparov et opérateurs non bornés dans les $C^*$-modules hilbertiens”, C. R. Acad. Sci. Paris Sér. I Math., 296 (1983), 875–878 | MR | Zbl
[3] Blackadar B., $K$-theory for operator algebras, Mathematical Sciences Research Institute Publications, 5, 2nd ed., Cambridge University Press, Cambridge, 1998 | MR | Zbl
[4] Brain S., Mesland B., van Suijlekom W. D., “Gauge theory for spectral triples and the unbounded Kasparov product”, J. Noncommut. Geom., 10 (2016), 135–206, arXiv: 1306.1951 | DOI | MR | Zbl
[5] Brown L. G., Douglas R. G., Fillmore P. A., “Extensions of $C^*$-algebras and $K$-homology”, Ann. of Math., 105 (1977), 265–324 | DOI | MR | Zbl
[6] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[7] Connes A., “Gravity coupled with matter and the foundation of non-commutative geometry”, Comm. Math. Phys., 182 (1996), 155–176, arXiv: hep-th/9603053 | DOI | MR | Zbl
[8] Deeley R. J., Goffeng M., Mesland B., “The bordism group of unbounded $KK$-cycles”, J. Topol. Anal., 10 (2018), 355–400, arXiv: 1503.07398 | DOI | MR | Zbl
[9] Hilsum M., “Bordism invariance in $KK$-theory”, Math. Scand., 107 (2010), 73–89 | DOI | MR | Zbl
[10] Jensen K. K., Thomsen K., Elements of $KK$-theory, Mathematics: Theory Applications, Birkhäuser Boston, Inc., Boston, MA, 1991 | DOI | MR | Zbl
[11] Kaad J., Morita invariance of unbounded bivariant $K$-theory, arXiv: 1612.08405
[12] Kaad J., “Differentiable absorption of Hilbert $C^*$-modules, connections, and lifts of unbounded operators”, J. Noncommut. Geom., 11 (2017), 1037–1068, arXiv: 1407.1389 | DOI | MR | Zbl
[13] Kaad J., Lesch M., “A local global principle for regular operators in Hilbert $C^*$-modules”, J. Funct. Anal., 262 (2012), 4540–4569, arXiv: 1107.2372 | DOI | MR | Zbl
[14] Kaad J., Lesch M., “Spectral flow and the unbounded Kasparov product”, Adv. Math., 248 (2013), 495–530, arXiv: 1110.1472 | DOI | MR | Zbl
[15] Kaad J., van Suijlekom W. D., “Factorization of Dirac operators on toric noncommutative manifolds”, J. Geom. Phys., 132 (2018), 282–300, arXiv: 1803.08921 | DOI | MR | Zbl
[16] Kasparov G. G., “Topological invariants of elliptic operators. I: $K$-homology”, Math. USSR-Izv., 9 (1975), 751–792 | DOI | MR
[17] Kasparov G. G., “Hilbert $C^*$-modules: theorems of Stinespring and Voiculescu”, J. Operator Theory, 4 (1980), 133–150 | MR | Zbl
[18] Kasparov G. G., “The operator $K$-functor and extensions of $C^*$-algebras”, Math. USSR-Izv., 16 (1980), 513–572 | DOI | MR
[19] Kucerovsky D., “The $KK$-product of unbounded modules”, $K$-Theory, 11 (1997), 17–34 | DOI | MR | Zbl
[20] Kucerovsky D., “A lifting theorem giving an isomorphism of $KK$-products in bounded and unbounded $KK$-theory”, J. Operator Theory, 44 (2000), 255–275 | MR | Zbl
[21] Lance E. C., Hilbert $C^*$-modules. A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995 | DOI | MR
[22] Lesch M., Mesland B., “Sums of regular self-adjoint operators in Hilbert-$C^*$-modules”, J. Math. Anal. Appl., 472 (2019), 947–980, arXiv: 1803.08295 | DOI | MR | Zbl
[23] Mesland B., “Unbounded bivariant $K$-theory and correspondences in noncommutative geometry”, J. Reine Angew. Math., 691 (2014), 101–172, arXiv: 0904.4383 | DOI | MR | Zbl
[24] Mesland B., Rennie A., “Nonunital spectral triples and metric completeness in unbounded $KK$-theory”, J. Funct. Anal., 271 (2016), 2460–2538, arXiv: 1502.04520 | DOI | MR | Zbl
[25] Skandalis G., “Some remarks on Kasparov theory”, J. Funct. Anal., 56 (1984), 337–347 | DOI | MR | Zbl
[26] van den Dungen K., Mesland B., “Homotopy equivalence in unbounded $KK$-theory”, Ann. K-Theory, 5 (2020), 501–537, arXiv: 1907.04049 | DOI | MR | Zbl
[27] Woronowicz S. L., “Unbounded elements affiliated with $C^*$-algebras and noncompact quantum groups”, Comm. Math. Phys., 136 (1991), 399–432 | DOI | MR | Zbl
[28] Woronowicz S. L., Napiórkowski K., “Operator theory in the $C^*$-algebra framework”, Rep. Math. Phys., 31 (1992), 353–371 | DOI | MR | Zbl