@article{SIGMA_2020_16_a79,
author = {Shuhei Tsujie},
title = {Modular {Construction} of {Free} {Hyperplane} {Arrangements}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a79/}
}
Shuhei Tsujie. Modular Construction of Free Hyperplane Arrangements. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a79/
[1] Abe T., “Divisionally free arrangements of hyperplanes”, Invent. Math., 204 (2016), 317–346, arXiv: 1502.07520 | DOI | MR | Zbl
[2] Abe T., “Restrictions of free arrangements and the division theorem”, Perspectives in Lie Theory, Springer INdAM Ser., 19, eds. F. Callegaro, G. Carnovale, F. Caselli, C. De Concini, A. De Sole, Springer, Cham, 2017, 389–401, arXiv: 1603.03863 | DOI | MR | Zbl
[3] Athanasiadis C. A., “On free deformations of the braid arrangement”, European J. Combin., 19 (1998), 7–18 | DOI | MR | Zbl
[4] Björner A., Edelman P. H., Ziegler G. M., “Hyperplane arrangements with a lattice of regions”, Discrete Comput. Geom., 5 (1990), 263–288 | DOI | MR | Zbl
[5] Borissova S., Regular round matroids, Master Thesis, California State University, 2016 https://scholarworks.lib.csusb.edu/etd/423
[6] Brylawski T., “Modular constructions for combinatorial geometries”, Trans. Amer. Math. Soc., 203 (1975), 1–44 | DOI | MR | Zbl
[7] Dirac G. A., “On rigid circuit graphs”, Abh. Math. Sem. Univ. Hamburg, 25 (1961), 71–76 | DOI | MR | Zbl
[8] Dowling T. A., “A class of geometric lattices based on finite groups”, J. Combin. Theory Ser. B, 14 (1973), 61–86 | DOI | MR | Zbl
[9] Edelman P. H., Reiner V., “Free hyperplane arrangements between $A_{n-1}$ and $B_n$”, Math. Z., 215 (1994), 347–365 | DOI | MR | Zbl
[10] Edelman P. H., Reiner V., “Free arrangements and rhombic tilings”, Discrete Comput. Geom., 15 (1996), 307–340 | DOI | MR | Zbl
[11] Jambu M., Papadima S., “A generalization of fiber-type arrangements and a new deformation method”, Topology, 37 (1998), 1135–1164 | DOI | MR | Zbl
[12] Jambu M., Terao H., “Free arrangements of hyperplanes and supersolvable lattices”, Adv. Math., 52 (1984), 248–258 | DOI | MR | Zbl
[13] Koban L., “Comments on: “Supersolvable frame-matroid and graphic-lift lattices” [European J. Combin. 22 (2001), 119–133] by T Zaslavsky”, European J. Combin., 25 (2004), 141–144 | DOI | MR | Zbl
[14] Kung J. P. S., “Numerically regular hereditary classes of combinatorial geometries”, Geom. Dedicata, 21 (1986), 85–105 | DOI | MR | Zbl
[15] Lindström B., “On strong joins and pushout of combinatorial geometries”, J. Combin. Theory Ser. A, 25 (1978), 77–79 | DOI | MR | Zbl
[16] Nakashima N., Tsujie S., Enumeration of flats of the extended Catalan and Shi arrangements with species, arXiv: 1904.09748
[17] Orlik P., Terao H., Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, 300, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[18] Oxley J., Matroid theory, Oxford Graduate Texts in Mathematics, 21, 2nd ed., Oxford University Press, Oxford, 2011 | DOI | MR | Zbl
[19] Postnikov A., Stanley R. P., “Deformations of Coxeter hyperplane arrangements”, J. Combin. Theory Ser. A, 91 (2000), 544–597, arXiv: math.CO/9712213 | DOI | MR | Zbl
[20] Probert A. M., Chordality in matroids: in search of the converse to Hliněný's theorem, Ph.D. Thesis, Victoria University of Wellington, 2018
[21] Saito K., “On the uniformization of complements of discriminant loci”, Hyperfunction and Linear Differential Equations, RIMS Kôkyûroku, 287, Res. Inst. Math. Sci. (RIMS), Kyoto, 1977, 117–137
[22] Saito K., “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 (1980), 265–291 | MR | Zbl
[23] Stanley R. P., “Modular elements of geometric lattices”, Algebra Universalis, 1 (1971), 214–217 | DOI | MR | Zbl
[24] Stanley R. P., “Supersolvable lattices”, Algebra Universalis, 2 (1972), 197–217 | DOI | MR | Zbl
[25] Suyama D., Torielli M., Tsujie S., “Signed graphs and the freeness of the Weyl subarrangements of type $B_\ell$”, Discrete Math., 342 (2019), 233–249, arXiv: 1707.01967 | DOI | MR | Zbl
[26] Terao H., “Generalized exponents of a free arrangement of hyperplanes and Shepherd–Todd–Brieskorn formula”, Invent. Math., 63 (1981), 159–179 | DOI | MR | Zbl
[27] Terao H., “Modular elements of lattices and topological fibration”, Adv. Math., 62 (1986), 135–154 | DOI | MR | Zbl
[28] Torielli M., Palezzato E., “Free hyperplane arrangements over arbitrary fields”, J. Algebraic Combin., 52 (2020), 237–249, arXiv: 1803.09908 | DOI | MR | Zbl
[29] Torielli M., Tsujie S., “Freeness of Hyperplane arrangements between Boolean arrangements and Weyl arrangements of type $B_\ell$”, Electron. J. Combin., 27 (2020), P3.10, 15 pp., arXiv: 1807.02432 | DOI | Zbl
[30] Welsh D. J. A., Matroid theory, Dover Books on Mathematics, Dover Publications, Mineola, N.Y., 2010 | MR
[31] Yoshinaga M., “Characterization of a free arrangement and conjecture of Edelman and Reiner”, Invent. Math., 157 (2004), 449–454 | DOI | MR | Zbl
[32] Yoshinaga M., “Free arrangements over finite field”, Proc. Japan Acad. Ser. A Math. Sci., 82 (2006), 179–182, arXiv: math.CO/0606005 | DOI | MR | Zbl
[33] Zaslavsky T., “Biased graphs. I. Bias, balance, and gains”, J. Combin. Theory Ser. B, 47 (1989), 32–52 | DOI | MR | Zbl
[34] Zaslavsky T., “Biased graphs. II. The three matroids”, J. Combin. Theory Ser. B, 51 (1991), 46–72 | DOI | MR | Zbl
[35] Zaslavsky T., “Supersolvable frame-matroid and graphic-lift lattices”, European J. Combin., 22 (2001), 119–133 | DOI | MR | Zbl
[36] Zaslavsky T., “Biased graphs. IV. Geometrical realizations”, J. Combin. Theory Ser. B, 89 (2003), 231–297 | DOI | MR | Zbl
[37] Ziegler G. M., “Matroid representations and free arrangements”, Trans. Amer. Math. Soc., 320 (1990), 525–541 | DOI | MR | Zbl
[38] Ziegler G. M., “Binary supersolvable matroids and modular constructions”, Proc. Amer. Math. Soc., 113 (1991), 817–829 | DOI | MR | Zbl