@article{SIGMA_2020_16_a78,
author = {Samuel Fromm},
title = {Admissible {Boundary} {Values} for the {Gerdjikov{\textendash}Ivanov} {Equation} with {Asymptotically} {Time-Periodic} {Boundary} {Data}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a78/}
}
TY - JOUR AU - Samuel Fromm TI - Admissible Boundary Values for the Gerdjikov–Ivanov Equation with Asymptotically Time-Periodic Boundary Data JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a78/ LA - en ID - SIGMA_2020_16_a78 ER -
%0 Journal Article %A Samuel Fromm %T Admissible Boundary Values for the Gerdjikov–Ivanov Equation with Asymptotically Time-Periodic Boundary Data %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a78/ %G en %F SIGMA_2020_16_a78
Samuel Fromm. Admissible Boundary Values for the Gerdjikov–Ivanov Equation with Asymptotically Time-Periodic Boundary Data. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a78/
[1] Antonopoulou D. C., Kamvissis S., “On the Dirichlet to Neumann problem for the 1-dimensional cubic NLS equation on the half-line”, Nonlinearity, 28 (2015), 3073–3099, arXiv: 1607.06286 | DOI | MR | Zbl
[2] Boutet de Monvel A., Its A., Kotlyarov V., “Long-time asymptotics for the focusing NLS equation with time-periodic boundary condition”, C. R. Math. Acad. Sci. Paris, 345 (2007), 615–620 | DOI | MR | Zbl
[3] Boutet de Monvel A., Its A., Kotlyarov V., “Long-time asymptotics for the focusing NLS equation with time-periodic boundary condition on the half-line”, Comm. Math. Phys., 290 (2009), 479–522 | DOI | MR | Zbl
[4] Boutet de Monvel A., Kotlyarov V., “The focusing nonlinear Schrödinger equation on the quarter plane with time-periodic boundary condition: a Riemann–Hilbert approach”, J. Inst. Math. Jussieu, 6 (2007), 579–611 | DOI | MR | Zbl
[5] Boutet de Monvel A., Kotlyarov V., Shepelsky D., “Decaying long-time asymptotics for the focusing NLS equation with periodic boundary condition”, Int. Math. Res. Not., 2009 (2009), 547–577 | DOI | MR | Zbl
[6] Boutet de Monvel A., Kotlyarov V. P., Shepelsky D., Zheng C., “Initial boundary value problems for integrable systems: towards the long time asymptotics”, Nonlinearity, 23 (2010), 2483–2499 | DOI | MR | Zbl
[7] Colin M., Ohta M., “Stability of solitary waves for derivative nonlinear Schrödinger equation”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 753–764 | DOI | MR | Zbl
[8] Deift P., Trubowitz E., “Inverse scattering on the line”, Comm. Pure Appl. Math., 32 (1979), 121–251 | DOI | MR | Zbl
[9] Erdoğan M.B., Gürel T. B., Tzirakis N., “The derivative nonlinear Schrödinger equation on the half line”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 1947–1973, arXiv: 1706.06898 | DOI | MR | Zbl
[10] Gerdzhikov V. S., Ivanov M. I., Kulish P. P., “Quadratic bundle and nonlinear equations”, Theoret. and Math. Phys., 44 (1980), 784–795 | DOI | MR
[11] Kaup D. J., Newell A. C., “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys., 19 (1978), 798–801 | DOI | MR | Zbl
[12] Lenells J., “Admissible boundary values for the defocusing nonlinear Schrödinger equation with asymptotically time-periodic data”, J. Differential Equations, 259 (2015), 5617–5639, arXiv: 1407.5046 | DOI | MR | Zbl
[13] Lenells J., Fokas A. S., “The nonlinear Schrödinger equation with $t$-periodic data: I Exact results”, Proc. Royal Soc. A, 471 (2015), 20140925, 22 pp., arXiv: 1412.0304 | DOI | MR | Zbl
[14] Lenells J., Fokas A. S., “The nonlinear Schrödinger equation with $t$-periodic data: II Perturbative results”, Proc. Royal Soc. A, 471 (2015), 20140926, 25 pp., arXiv: 1412.0306 | DOI | MR | Zbl
[15] Liu J., Perry P. A., Sulem C., “Global existence for the derivative nonlinear Schrödinger equation by the method of inverse scattering”, Comm. Partial Differential Equations, 41 (2016), 1692–1760, arXiv: 1511.01173 | DOI | MR | Zbl