@article{SIGMA_2020_16_a77,
author = {Jiayin Pan},
title = {The {Fundamental} {Groups} of {Open} {Manifolds} with {Nonnegative} {Ricci} {Curvature}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a77/}
}
Jiayin Pan. The Fundamental Groups of Open Manifolds with Nonnegative Ricci Curvature. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a77/
[1] Abresch U., Gromoll D., “On complete manifolds with nonnegative Ricci curvature”, J. Amer. Math. Soc., 3 (1990), 355–374 | DOI | MR | Zbl
[2] Anderson M. T., “On the topology of complete manifolds of nonnegative Ricci curvature”, Topology, 29 (1990), 41–55 | DOI | MR | Zbl
[3] Anderson M. T., Kronheimer P. B., LeBrun C., “Complete Ricci-flat Kähler manifolds of infinite topological type”, Comm. Math. Phys., 125 (1989), 637–642 | DOI | MR | Zbl
[4] Bérard-Bergery L., “Quelques exemples de variétés riemanniennes complètes non compactes à courbure de Ricci positive”, C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), 159–161 | MR | Zbl
[5] Bishop R. L., “A relation between volume, mean curvature and diameter”, Amer. Math. Soc. Not., 10 (1963), 364–364
[6] Cheeger J., Colding T. H., “Lower bounds on Ricci curvature and the almost rigidity of warped products”, Ann. of Math., 144 (1996), 189–237 | DOI | MR | Zbl
[7] Cheeger J., Colding T. H., “On the structure of spaces with Ricci curvature bounded below. I”, J. Differential Geom., 46 (1997), 406–480 | DOI | MR | Zbl
[8] Cheeger J., Colding T. H., “On the structure of spaces with Ricci curvature bounded below. II”, J. Differential Geom., 54 (2000), 13–35 | DOI | MR | Zbl
[9] Cheeger J., Colding T. H., “On the structure of spaces with {R}icci curvature bounded below. III”, J. Differential Geom., 54 (2000), 37–74 | DOI | MR | Zbl
[10] Cheeger J., Gromoll D., “The splitting theorem for manifolds of nonnegative Ricci curvature”, J. Differential Geometry, 6 (1971), 119–128 | DOI | MR | Zbl
[11] Cheeger J., Gromoll D., “On the structure of complete manifolds of nonnegative curvature”, Ann. of Math., 96 (1972), 413–443 | DOI | MR | Zbl
[12] Cheeger J., Naber A., “Lower bounds on Ricci curvature and quantitative behavior of singular sets”, Invent. Math., 191 (2013), 321–339, arXiv: 1103.1819 | DOI | MR | Zbl
[13] Cheeger J., Naber A., “Regularity of Einstein manifolds and the codimension 4 conjecture”, Ann. of Math., 182 (2015), 1093–1165, arXiv: 1406.6534 | DOI | MR | Zbl
[14] Colding T. H., “Ricci curvature and volume convergence”, Ann. of Math., 145 (1997), 477–501 | DOI | MR | Zbl
[15] Colding T. H., Naber A., “Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications”, Ann. of Math., 176 (2012), 1173–1229, arXiv: 1102.5003 | DOI | MR | Zbl
[16] Evans B., Moser L., “Solvable fundamental groups of compact $3$-manifolds”, Trans. Amer. Math. Soc., 168 (1972), 189–210 | DOI | MR | Zbl
[17] Fukaya K., “Theory of convergence for Riemannian orbifolds”, Japan. J. Math. (N.S.), 12 (1986), 121–160 | DOI | MR | Zbl
[18] Fukaya K., Yamaguchi T., “The fundamental groups of almost non-negatively curved manifolds”, Ann. of Math., 136 (1992), 253–333 | DOI | MR | Zbl
[19] Gromov M., “Almost flat manifolds”, J. Differential Geometry, 13 (1978), 231–241 | DOI | MR | Zbl
[20] Gromov M., “Groups of polynomial growth and expanding maps”, Inst. Hautes Études Sci. Publ. Math., 1981, 53–73 | DOI | MR
[21] Gromov M., Metric structures for Riemannian and non-Riemannian spaces, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007 | DOI | MR | Zbl
[22] Honda S., “On low-dimensional Ricci limit spaces”, Nagoya Math. J., 209 (2013), 1–22 | DOI | MR | Zbl
[23] Kapovitch V., Wilking B., Structure of fundamental groups of manifolds of Ricci curvature bounded below, arXiv: 1105.5955
[24] Li P., “Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature”, Ann. of Math., 124 (1986), 1–21 | DOI | MR | Zbl
[25] Liu G., “3-manifolds with nonnegative Ricci curvature”, Invent. Math., 193 (2013), 367–375, arXiv: 1108.1888 | DOI | MR | Zbl
[26] Menguy X., “Noncollapsing examples with positive Ricci curvature and infinite topological type”, Geom. Funct. Anal., 10 (2000), 600–627 | DOI | MR | Zbl
[27] Milnor J., “A note on curvature and fundamental group”, J. Differential Geometry, 2 (1968), 1–7 | DOI | MR | Zbl
[28] Nabonnand P., “Sur les variétés riemanniennes complètes à courbure de Ricci positive”, C. R. Acad. Sci. Paris Sér. A-B, 291 (1980), A591–A593 | MR
[29] Pan J., “Nonnegative Ricci curvature, stability at infinity and finite generation of fundamental groups”, Geom. Topol., 23 (2019), 3203–3231, arXiv: 1710.05498 | DOI | MR | Zbl
[30] Pan J., “A proof of Milnor conjecture in dimension 3”, J. Reine Angew. Math., 758 (2020), 253–260, arXiv: 1703.08143 | DOI | MR | Zbl
[31] Pan J., Nonnegative Ricci curvature, almost stability at infinity, and structure of fundamental groups, arXiv: 1809.10220 | MR
[32] Pan J., “On the escape rate of geodesic loops in an open manifold with nonnegative Ricci curvature”, Geom. Topol. (to appear) , arXiv: 2003.01326
[33] Pan J., Nonnegative Ricci curvature and escape rate gap, in preparation
[34] Pan J., Rong X., Ricci curvature and isometric actions with scaling nonvanishing property, arXiv: 1808.02329
[35] Perelman G., “Manifolds of positive Ricci curvature with almost maximal volume”, J. Amer. Math. Soc., 7 (1994), 299–305 | DOI | MR | Zbl
[36] Perelman G., “Construction of manifolds of positive Ricci curvature with big volume and large Betti numbers”, Comparison Geometry (Berkeley, CA, 1993-94), Math. Sci. Res. Inst. Publ., 30, Cambridge University Press, Cambridge, 1997, 157–163 | MR | Zbl
[37] Schoen R., Yau S. T., “Complete three-dimensional manifolds with positive Ricci curvature and scalar curvature”, Seminar on Differential Geometry, Ann. of Math. Stud., 102, Princeton University Press, Princeton, N.J., 1982, 209–228 | MR
[38] Sha J.-P., Yang D., “Examples of manifolds of positive Ricci curvature”, J. Differential Geometry, 29 (1989), 95–103 | DOI | MR | Zbl
[39] Sha J. P., Yang D., “Positive Ricci curvature on the connected sums of $S^n\times S^m$”, J. Differential Geom., 33 (1991), 127–137 | DOI | MR | Zbl
[40] Sharafutdinov V. A., “Convex sets in a manifold of nonnegative curvature”, Math. Notes, 26 (1979), 556–560 | DOI | MR
[41] Shen Z., Sormani C., “The topology of open manifolds with nonnegative Ricci curvature”, Commun. Math. Anal., 2008, 20–34, arXiv: math.DG/0606774 | MR
[42] Sormani C., “The almost rigidity of manifolds with lower bounds on Ricci curvature and minimal volume growth”, Comm. Anal. Geom., 8 (2000), 159–212, arXiv: math.DG/9903171 | DOI | MR | Zbl
[43] Sormani C., “Nonnegative Ricci curvature, small linear diameter growth and finite generation of fundamental groups”, J. Differential Geom., 54 (2000), 547–559, arXiv: math.DG/9809133 | DOI | MR | Zbl
[44] Sormani C., “On loops representing elements of the fundamental group of a complete manifold with nonnegative Ricci curvature”, Indiana Univ. Math. J., 50 (2001), 1867–1883, arXiv: math.DG/9904096 | DOI | MR | Zbl
[45] Sormani C., Wei G., “Various covering spectra for complete metric spaces”, Asian J. Math., 19 (2015), 171–202, arXiv: 1211.7123 | DOI | MR | Zbl
[46] Wan J., “On the fundamental group of complete manifolds with almost Euclidean volume growth”, Proc. Amer. Math. Soc., 147 (2019), 4493–4498, arXiv: 1902.05292 | DOI | MR | Zbl
[47] Wei G., “Examples of complete manifolds of positive Ricci curvature with nilpotent isometry groups”, Bull. Amer. Math. Soc. (N.S.), 19 (1988), 311–313 | DOI | MR | Zbl
[48] Wilking B., “On fundamental groups of manifolds of nonnegative curvature”, Differential Geom. Appl., 13 (2000), 129–165 | DOI | MR | Zbl
[49] Wraith D., “Surgery on Ricci positive manifolds”, J. Reine Angew. Math., 501 (1998), 99–113 | DOI | MR | Zbl
[50] Wraith D., “New connected sums with positive Ricci curvature”, Ann. Global Anal. Geom., 32 (2007), 343–360 | DOI | MR | Zbl
[51] Wu B.Y., “On the fundamental group of Riemannian manifolds with nonnegative Ricci curvature”, Geom. Dedicata, 162 (2013), 337–344 | DOI | MR | Zbl
[52] Wylie W. C., “Noncompact manifolds with nonnegative Ricci curvature”, J. Geom. Anal., 16 (2006), 535–550, arXiv: math.DG/0510139 | DOI | MR | Zbl