Elliptic and $q$-Analogs of the Fibonomial Numbers
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 2009, Sagan and Savage introduced a combinatorial model for the Fibonomial numbers, integer numbers that are obtained from the binomial coefficients by replacing each term by its corresponding Fibonacci number. In this paper, we present a combinatorial description for the $q$-analog and elliptic analog of the Fibonomial numbers. This is achieved by introducing some $q$-weights and elliptic weights to a slight modification of the combinatorial model of Sagan and Savage.
Keywords: weighted enumeration.
Mots-clés : Fibonomial, Fibonacci, $q$-analog, elliptic analog
@article{SIGMA_2020_16_a75,
     author = {Nantel Bergeron and Cesar Ceballos and Josef K\"ustner},
     title = {Elliptic and $q${-Analogs} of the {Fibonomial} {Numbers}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a75/}
}
TY  - JOUR
AU  - Nantel Bergeron
AU  - Cesar Ceballos
AU  - Josef Küstner
TI  - Elliptic and $q$-Analogs of the Fibonomial Numbers
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a75/
LA  - en
ID  - SIGMA_2020_16_a75
ER  - 
%0 Journal Article
%A Nantel Bergeron
%A Cesar Ceballos
%A Josef Küstner
%T Elliptic and $q$-Analogs of the Fibonomial Numbers
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a75/
%G en
%F SIGMA_2020_16_a75
Nantel Bergeron; Cesar Ceballos; Josef Küstner. Elliptic and $q$-Analogs of the Fibonomial Numbers. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a75/

[1] Amdeberhan T., Chen X., Moll V. H., Sagan B. E., “Generalized Fibonacci polynomials and Fibonomial coefficients”, Ann. Comb., 18 (2014), 541–562, arXiv: 1306.6511 | DOI | MR | Zbl

[2] Athanasiadis C. A., “On a refinement of the generalized Catalan numbers for Weyl groups”, Trans. Amer. Math. Soc., 357 (2005), 179–196 | DOI | MR | Zbl

[3] Aval J. C., Bergeron F., “A note on: rectangular Schröder parking functions combinatorics”, Sém. Lothar. Combin., 79 (2018), B79a, 13 pp., arXiv: 1603.09487 | MR | Zbl

[4] Benjamin A. T., Reiland E., “Combinatorial proofs of Fibonomial identities”, Fibonacci Quart., 52 (2014), 28–34 | MR | Zbl

[5] Bennett C., Carrillo J., Machacek J., Sagan B. E., Combinatorial interpretations of Lucas analogues of binomial coefficients and Catalan numbers, arXiv: 1809.09036 | MR

[6] Bergeron F., “Open questions for operators related to rectangular Catalan combinatorics”, J. Comb., 8 (2017), 673–703, arXiv: 1603.04476 | DOI | MR | Zbl

[7] Bergeron F., Garsia A., Leven E. S., Xin G., “Some remarkable new plethystic operators in the theory of Macdonald polynomials”, J. Comb., 7 (2016), 671–714, arXiv: 1405.0316 | DOI | MR | Zbl

[8] Bergeron F., Garsia A., Sergel Leven E., Xin G., “Compositional $(km,kn)$-shuffle conjectures”, Int. Math. Res. Not., 2016 (2016), 4229–4270, arXiv: 1404.4616 | DOI | MR | Zbl

[9] Borodin A., Gorin V., Rains E. M., “$q$-distributions on boxed plane partitions”, Selecta Math. (N.S.), 16 (2010), 731–789, arXiv: 0905.0679 | DOI | MR | Zbl

[10] Chen X., Sagan B. E., “The fractal nature of the Fibonomial triangle”, Integers, 14 (2014), A3, 12 pp., arXiv: 1306.2377 | MR

[11] Cherednik I., Double affine Hecke algebras, London Mathematical Society Lecture Note Series, 319, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[12] Dunlap R. A., The golden ratio and Fibonacci numbers, World Sci. Publ. Co., Inc., River Edge, NJ, 1997 | DOI | MR | Zbl

[13] Etingof P., Ginzburg V., “Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism”, Invent. Math., 147 (2002), 243–348, arXiv: math.AG/0011114 | DOI | MR | Zbl

[14] Etingof P., Gorsky E., Losev I., “Representations of rational Cherednik algebras with minimal support and torus knots”, Adv. Math., 277 (2015), 124–180, arXiv: 1304.3412 | DOI | MR | Zbl

[15] Etingof P., Ma X., Lecture notes on Cherednik algebras, arXiv: 1001.0432

[16] Gorsky E., Mazin M., Vazirani M., “Affine permutations and rational slope parking functions”, Trans. Amer. Math. Soc., 368 (2016), 8403–8445, arXiv: 1403.0303 | DOI | MR | Zbl

[17] Gorsky E., Neguţ A., “Refined knot invariants and Hilbert schemes”, J. Math. Pures Appl., 104 (2015), 403–435, arXiv: 1304.3328 | DOI | MR | Zbl

[18] Gorsky E., Oblomkov A., Rasmussen J., Shende V., “Torus knots and the rational DAHA”, Duke Math. J., 163 (2014), 2709–2794, arXiv: 1207.4523 | DOI | MR | Zbl

[19] Hikita T., “Affine Springer fibers of type $A$ and combinatorics of diagonal coinvariants”, Adv. Math., 263 (2014), 88–122, arXiv: 1203.5878 | DOI | MR | Zbl

[20] Hoggatt Jr. V.E., Long C. T., “Divisibility properties of generalized Fibonacci polynomials”, Fibonacci Quart., 12 (1974), 113–120 | MR | Zbl

[21] Li S.X., Personal communication, Algebraic Combinatorics Seminar at the Fields Institute, 2015

[22] Mellit A., Toric braids and $(m,n)$-parking functions, arXiv: 1604.07456

[23] Posamentier A. S., Lehmann I., The (fabulous) Fibonacci numbers, Prometheus Books, Amherst, NY, 2007 | MR | Zbl

[24] Rains E. M., “$BC_n$-symmetric Abelian functions”, Duke Math. J., 135 (2006), 99–180, arXiv: math.CO/0402113 | DOI | MR | Zbl

[25] Reiland E., Combinatorial Interpretations of Fibonomial identities, Master's Thesis, Harvey Mudd College, Claremont, CA, 2011

[26] Rosengren H., “Elliptic hypergeometric functions”, Lecture notes at OPSF-S6 (College Park, Maryland, August 2016), arXiv: 1608.06161

[27] Sagan B. E., Savage C. D., “Combinatorial interpretations of binomial coefficient analogues related to Lucas sequences”, Integers, 10 (2010), A52, 697–703, arXiv: 0911.3159 | DOI | MR | Zbl

[28] Schlosser M. J., “Elliptic enumeration of nonintersecting lattice paths”, J. Combin. Theory Ser. A, 114 (2007), 505–521, arXiv: math.CO/0602260 | DOI | MR | Zbl

[29] Schlosser M. J., “A noncommutative weight-dependent generalization of the binomial theorem”, Sém. Lothar. Combin., 81 (2020), B81j, 20 pp., arXiv: 1106.2112 | MR | Zbl

[30] Schlosser M. J., Senapati K., Uncu A. K., Log-concavity results for a biparametric and an elliptic extension of the $q$-binomial coefficients, arXiv: 2002.07796

[31] Schlosser M. J., Yoo M., “Elliptic rook and file numbers”, Electron. J. Combin., 24 (2017), 1.31, 47 pp., arXiv: 1512.01720 | DOI | MR | Zbl

[32] Schlosser M. J., Yoo M., “Weight-dependent commutation relations and combinatorial identities”, Discrete Math., 341 (2018), 2308–2325, arXiv: 1610.08680 | DOI | MR | Zbl

[33] Thiel M., “From Anderson to zeta”, Adv. in Appl. Math., 81 (2016), 156–201, arXiv: 1504.07363 | DOI | MR | Zbl

[34] Tirrell J., Sagan B. E., Lucas atoms, arXiv: 1909.02593 | MR

[35] Weber H., Elliptische functionen und algebraische zahlen, Vieweg-Verlag, Braunschweig, 1891 | Zbl