The Racah Algebra as a Subalgebra of the Bannai–Ito Algebra
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Assume that ${\mathbb F}$ is a field with $\operatorname{char}{\mathbb F}\not=2$. The Racah algebra $\Re$ is a unital associative ${\mathbb F}$-algebra defined by generators and relations. The generators are $A$, $B$, $C$, $D$ and the relations assert that $[A,B]=[B,C]=[C,A]=2D$ and each of $[A,D]+AC-BA$, $[B,D]+BA-CB$, $[C,D]+CB-AC$ is central in $\Re$. The Bannai–Ito algebra $\mathfrak{BI}$ is a unital associative ${\mathbb F}$-algebra generated by $X$, $Y$, $Z$ and the relations assert that each of $\{X,Y\}-Z$, $\{Y,Z\}-X$, $\{Z,X\}-Y$ is central in $\mathfrak{BI}$. It was discovered that there exists an ${\mathbb F}$-algebra homomorphism $\zeta\colon \Re\to \mathfrak{BI}$ that sends $A \mapsto \frac{(2X-3)(2X+1)}{16}$, $B \mapsto \frac{(2Y-3)(2Y+1)}{16}$, $C \mapsto \frac{(2Z-3)(2Z+1)}{16}$. We show that $\zeta$ is injective and therefore $\Re$ can be considered as an ${\mathbb F}$-subalgebra of $\mathfrak{BI}$. Moreover we show that any Casimir element of $\Re$ can be uniquely expressed as a polynomial in $\{X,Y\}-Z$, $\{Y,Z\}-X$, $\{Z,X\}-Y$ and $X+Y+Z$ with coefficients in ${\mathbb F}$.
Mots-clés : Bannai–Ito algebra, Racah algebra, Casimir elements.
@article{SIGMA_2020_16_a74,
     author = {Hau-Wen Huang},
     title = {The {Racah} {Algebra} as a {Subalgebra} of the {Bannai{\textendash}Ito} {Algebra}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a74/}
}
TY  - JOUR
AU  - Hau-Wen Huang
TI  - The Racah Algebra as a Subalgebra of the Bannai–Ito Algebra
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a74/
LA  - en
ID  - SIGMA_2020_16_a74
ER  - 
%0 Journal Article
%A Hau-Wen Huang
%T The Racah Algebra as a Subalgebra of the Bannai–Ito Algebra
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a74/
%G en
%F SIGMA_2020_16_a74
Hau-Wen Huang. The Racah Algebra as a Subalgebra of the Bannai–Ito Algebra. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a74/

[1] Bergman G. M., “The diamond lemma for ring theory”, Adv. Math., 29 (1978), 178–218 | DOI | MR

[2] Crampé N., Frappat L., Vinet L., “Centralizers of the superalgebra $\mathfrak{osp}(1|2)$: the Brauer algebra as a quotient of the Bannai–Ito algebra”, J. Phys. A: Math. Theor., 52 (2019), 424001, 11 pp., arXiv: 1906.03936 | DOI | MR

[3] De Bie H., De Clercq H., “The $q$-Bannai–Ito algebra and multivariate $(-q)$-Racah and Bannai–Ito polynomials”, J. London Math. Soc. (to appear) | DOI

[4] De Bie H., De Clercq H., van de Vijver W., “The higher rank $q$-deformed Bannai–Ito and Askey–Wilson algebra”, Comm. Math. Phys., 374 (2020), 277–316, arXiv: 1805.06642 | DOI | MR | Zbl

[5] De Bie H., Genest V. X., Tsujimoto S., Vinet L., Zhedanov A., “The Bannai–Ito algebra and some applications”, J. Phys. Conf. Ser., 597 (2015), 012001, 16 pp., arXiv: 1411.3913 | DOI

[6] De Bie H., Genest V. X., van de Vijver W., Vinet L., “Bannai–Ito algebras and the $\mathfrak{osp}(1;2)$ superalgebra”, Physical and Mathematical Aspects of Symmetries, Proceedings of the 31st International Colloquium in Group Theoretical Methods in Physics (Rio de Janeiro, June 19–25, 2016), eds. Duarte S., Gazeau J.-P., Faci S., Micklitz T., Scherer R., Toppan F., Springer, Cham, 2017, 349–354, arXiv: 1610.04797 | DOI | Zbl

[7] De Bie H., Genest V. X., van de Vijver W., Vinet L., “A higher rank Racah algebra and the ${\mathbb Z}^n_2$ Laplace–Dunkl operator”, J. Phys. A: Math. Theor., 51 (2018), 025203, 20 pp., arXiv: 1610.02638 | DOI | MR | Zbl

[8] De Bie H., Genest V. X., Vinet L., “A Dirac–Dunkl equation on $S^2$ and the Bannai–Ito algebra”, Comm. Math. Phys., 344 (2016), 447–464, arXiv: 1501.03108 | DOI | MR | Zbl

[9] De Bie H., Genest V. X., Vinet L., “The $\mathbb{Z}_2^n$ Dirac–Dunkl operator and a higher rank Bannai–Ito algebra”, Adv. Math., 303 (2016), 390–414, arXiv: 1511.02177 | DOI | MR | Zbl

[10] Genest V. X., Lapointe L., Vinet L., “$\mathfrak{osp}(1,2)$ and generalized Bannai–Ito algebras”, Trans. Amer. Math. Soc., 372 (2019), 4127–4148, arXiv: 1705.03761 | DOI | MR | Zbl

[11] Genest V. X., Vinet L., Zhedanov A., “The Bannai–Ito algebra and a superintegrable system with reflections on the two-sphere”, J. Phys. A: Math. Theor., 47 (2014), 205202, 13 pp., arXiv: 1401.1525 | DOI | MR | Zbl

[12] Genest V. X., Vinet L., Zhedanov A., “The Bannai–Ito polynomials as Racah coefficients of the $\mathfrak{sl}_{-1}(2)$ algebra”, Proc. Amer. Math. Soc., 142 (2014), 1545–1560, arXiv: 1205.4215 | DOI | MR | Zbl

[13] Genest V. X., Vinet L., Zhedanov A., “The equitable Racah algebra from three $\mathfrak{su}(1,1)$ algebras”, J. Phys. A: Math. Theor., 47 (2014), 025203, 12 pp., arXiv: 1309.3540 | DOI | MR | Zbl

[14] Genest V. X., Vinet L., Zhedanov A., “The Racah algebra and superintegrable models”, J. Phys. Conf. Ser., 512 (2014), 012011, 15 pp., arXiv: 1312.3874 | DOI

[15] Genest V. X., Vinet L., Zhedanov A., “Superintegrability in two dimensions and the Racah–Wilson algebra”, Lett. Math. Phys., 104 (2014), 931–952, arXiv: 1307.5539 | DOI | MR | Zbl

[16] Genest V. X., Vinet L., Zhedanov A., “Embeddings of the Racah algebra into the Bannai–Ito algebra”, SIGMA, 11 (2015), 050, 11 pp., arXiv: 1504.00558 | DOI | MR | Zbl

[17] Genest V. X., Vinet L., Zhedanov A., “A Laplace–Dunkl equation on $S^2$ and the Bannai–Ito algebra”, Comm. Math. Phys., 336 (2015), 243–259, arXiv: 1312.6604 | DOI | MR | Zbl

[18] Genest V. X., Vinet L., Zhedanov A., “The non-symmetric Wilson polynomials are the Bannai–Ito polynomials”, Proc. Amer. Math. Soc., 144 (2016), 5217–5226, arXiv: 1507.02995 | DOI | MR | Zbl

[19] Granovskiĭ Y. A., Zhedanov A. S., “Nature of the symmetry group of the $6j$-symbol”, Soviet Phys. JETP, 94 (1988), 1982–1985 | MR

[20] Granovskiĭ Y.I., Zhedanov A. S., Lutsenko I. M., “Quadratic algebras and dynamical symmetry of the Schrödinger equation”, Soviet Phys. JETP, 99 (1991), 205–209 | MR

[21] Huang H. W., Finite-dimensional modules of the Racah algebra and the additive DAHA of type $(C_1^\vee,C_1)$, arXiv: 1906.09160

[22] Huang H. W., Bockting-Conrad S., “The Casimir elements of the Racah algebra”, J. Algebra Appl. (to appear) , arXiv: 1711.09574 | DOI

[23] Lévy-Leblond J. M., Lévy-Nahas M., “Symmetrical coupling of three angular momenta”, J. Math. Phys., 6 (1965), 1372–1380 | DOI | MR | Zbl

[24] Terwilliger P., “The universal Askey–Wilson algebra”, SIGMA, 7 (2011), 069, 24 pp., arXiv: 1104.2813 | DOI | MR | Zbl

[25] Terwilliger P., “The universal Askey–Wilson algebra and DAHA of type $\big(C^\vee_1,C_1\big)$”, SIGMA, 9 (2013), 047, 40 pp., arXiv: 1202.4673 | DOI | MR | Zbl

[26] Tsujimoto S., Vinet L., Zhedanov A., “Dunkl shift operators and Bannai–Ito polynomials”, Adv. Math., 229 (2012), 2123–2158, arXiv: 1106.3512 | DOI | MR | Zbl