@article{SIGMA_2020_16_a73,
author = {Gor A. Sarkissian and Vyacheslav P. Spiridonov},
title = {The {Endless} {Beta} {Integrals}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a73/}
}
Gor A. Sarkissian; Vyacheslav P. Spiridonov. The Endless Beta Integrals. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a73/
[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[2] Aomoto K., “On the complex Selberg integral”, Quart. J. Math. Oxford, 38 (1987), 385–399 | DOI | MR | Zbl
[3] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., 54, 1985, iv+55 pp. | DOI | MR
[4] Bazhanov V. V., Mangazeev V. V., Sergeev S. M., “Exact solution of the Faddeev–Volkov model”, Phys. Lett. A, 372 (2008), 1547–1550, arXiv: 0706.3077 | DOI | MR | Zbl
[5] Chicherin D., Spiridonov V. P., “The hyperbolic modular double and the Yang–Baxter equation”, Representation Theory, Special Functions and Painlevé equations, RIMS 2015, Adv. Stud. Pure Math., 76, Math. Soc. Japan, Tokyo, 2018, 95–123, arXiv: 1511.00131 | DOI | MR | Zbl
[6] Derkachov S.É., Manashov A. N., “On complex gamma-function integrals”, SIGMA, 16 (2020), 003, 20 pp., arXiv: 1908.01530 | DOI | MR | Zbl
[7] Derkachov S.É., Manashov A. N., Valinevich P. A., “Gustafson integrals for ${\rm SL}(2,{\mathbb C})$ spin magnet”, J. Phys. A: Math. Theor., 50 (2017), 294007, 12 pp., arXiv: 1612.00727 | DOI | MR | Zbl
[8] Derkachov S.É., Manashov A. N., Valinevich P. A., “${\rm SL}(2,{\mathbb C})$ Gustafson integrals”, SIGMA, 14 (2018), 030, 16 pp., arXiv: 1711.07822 | DOI | MR | Zbl
[9] Derkachov S.É., Spiridonov V. P., “The $6j$-symbols for the ${\rm SL}(2,{\mathbb C})$ group”, Theoret. and Math. Phys., 198 (2019), 29–47, arXiv: 1711.07073 | DOI | MR | Zbl
[10] Dimofte T., “Complex Chern–Simons theory at level $k$ via the 3d-3d correspondence”, Comm. Math. Phys., 339 (2015), 619–662, arXiv: 1409.0857 | DOI | MR | Zbl
[11] Dotsenko V. S., Fateev V. A., “Four-point correlation functions and the operator algebra in $2$D conformal invariant theories with central charge $C\leq 1$”, Nuclear Phys. B, 251 (1985), 691–734 | DOI | MR
[12] Faddeev L. D., “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34 (1995), 249–254, arXiv: hep-th/9504111 | DOI | MR | Zbl
[13] Faddeev L. D., “Currentlike variables in massive and massless integrable models”, Quantum Groups and their Applications in Physics (Varenna, 1994), Proc. Internat. School Phys. Enrico Fermi, 127, IOS, Amsterdam, 1996, 117–135, arXiv: hep-th/9408041 | DOI | MR | Zbl
[14] Faddeev L. D., “Modular double of a quantum group”, Conférence Moshé Flato 1999 (Dijon), v. I, Math. Phys. Stud., 21, Kluwer Acad. Publ., Dordrecht, 2000, 149–156, arXiv: math.QA/9912078 | MR | Zbl
[15] Gel'fand I. M., Graev M. I., Vilenkin N. J., Generalized functions, v. 5, Integral geometry and representation theory, Fizmatgiz, M., 1962 | MR
[16] Iorgov N., Lisovyy O., Tykhyy Yu., “Painlevé VI connection problem and monodromy of $c=1$ conformal blocks”, J. High Energy Phys., 2013:12 (2013), 029, 27 pp., arXiv: 1308.4092 | DOI | MR | Zbl
[17] Ismagilov R. S., “Racah operators for principal series of representations of the group ${\rm SL}(2,{\mathbb C})$”, Sb. Math., 198 (2007), 369–381 | DOI | MR | Zbl
[18] Kashaev R., Luo F., Vartanov G., “A TQFT of Turaev–Viro type on shaped triangulations”, Ann. Henri Poincaré, 17 (2016), 1109–1143, arXiv: 1210.8393 | DOI | MR | Zbl
[19] Kels A. P., “A new solution of the star-triangle relation”, J. Phys. A: Math. Theor., 47 (2014), 055203, 7 pp., arXiv: 1302.3025 | DOI | Zbl
[20] Kels A. P., Yamazaki M., “Elliptic hypergeometric sum/integral transformations and supersymmetric lens index”, SIGMA, 14 (2018), 013, 29 pp., arXiv: 1704.03159 | DOI | MR | Zbl
[21] Kharchev S., Lebedev D., Semenov-Tian-Shansky M., “Unitary representations of $U_q({\mathfrak{gl}}(2,{\mathbb R}))$, the modular double and the multiparticle $q$-deformed Toda chains”, Comm. Math. Phys., 225 (2002), 573–609, arXiv: hep-th/0102180 | DOI | MR | Zbl
[22] Koornwinder T. H., “Jacobi functions as limit cases of $q$-ultraspherical polynomials”, J. Math. Anal. Appl., 148 (1990), 44–54 | DOI | MR | Zbl
[23] Mimachi K., “Complex hypergeometric integrals”, Representation Theory, Special Functions and Painlevé equations, RIMS 2015, Adv. Stud. Pure Math., 76, Math. Soc. Japan, Tokyo, 2018, 469–485 | DOI | MR | Zbl
[24] Molchanov V. F., Neretin Yu. A., “A pair of commuting hypergeometric operators on the complex plane and bispectrality”, J. Spectr. Theory (to appear) , arXiv: 1812.06766
[25] Naimark M. A., “Decomposition of a tensor product of irreducible representations of the proper Lorentz group into irreducible representations”, American Mathematical Society Translations: Series 2, 36, Amer. Math. Soc., Providence, RI, 1964, 101–229 | DOI
[26] Neretin Yu.A., “An analog of the Dougall formula and of the de Branges–Wilson integral”, Ramanujan J. (to appear) , arXiv: 1812.07341 | DOI
[27] Neretin Yu.A., “Barnes–Ismagilov integrals and hypergeometric functions of the complex field”, SIGMA, 16 (2020), 072, 20 pp., arXiv: 1910.10686 | DOI | MR
[28] Rahman M., “An integral representation of a $_{10}\varphi_9$ and continuous bi-orthogonal $_{10}\varphi_9$ rational functions”, Canad. J. Math., 38 (1986), 605–618 | DOI | MR | Zbl
[29] Rains E. M., “Limits of elliptic hypergeometric integrals”, Ramanujan J., 18 (2009), 257–306, arXiv: math.CA/0607093 | DOI | MR | Zbl
[30] Ruijsenaars S. N. M., “A generalized hypergeometric function satisfying four analytic difference equations of Askey–Wilson type”, Comm. Math. Phys., 206 (1999), 639–690 | DOI | MR | Zbl
[31] Runkel I., Watts G. M. T., “A nonrational CFT with $c = 1$ as a limit of minimal models”, J. High Energy Phys., 2001:9 (2001), 006, 41 pp., arXiv: hep-th/0107118 | DOI
[32] Sarkissian G. A., Spiridonov V. P., “The modular group and a hyperbolic beta integral”, Russian Math. Surveys, 75 (2020), 187–188 | DOI | MR | Zbl
[33] Sarkissian G. A., Spiridonov V. P., “General modular quantum dilogarithm and beta integrals”, Proc. Steklov Inst. Math., 309 (2020), 251–270, arXiv: 1910.11747 | DOI | MR | Zbl
[34] Spiridonov V. P., “On the elliptic beta function”, Russian Math. Surveys, 56 (2001), 185–186 | DOI | MR | Zbl
[35] Spiridonov V. P., “Theta hypergeometric integrals”, St. Petersburg Math. J., 15 (2004), 929–967, arXiv: math.CA/0303205 | DOI | MR | Zbl
[36] Spiridonov V. P., “Essays on the theory of elliptic hypergeometric functions”, Russian Math. Surveys, 63 (2008), 405–472, arXiv: 0805.3135 | DOI | MR | Zbl
[37] Spiridonov V. P., “Elliptic beta integrals and solvable models of statistical mechanics”, Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemp. Math., 563, Amer. Math. Soc., Providence, RI, 2012, 181–211, arXiv: 1011.3798 | DOI | MR | Zbl
[38] Spiridonov V. P., “Rarefied elliptic hypergeometric functions”, Adv. Math., 331 (2018), 830–873, arXiv: 1609.00715 | DOI | MR | Zbl
[39] Spiridonov V. P., “The rarefied elliptic Bailey lemma and the Yang–Baxter equation”, J. Phys. A: Math. Theor., 52 (2019), 355201, 15 pp., arXiv: 1904.12046 | DOI | MR
[40] Stokman J. V., “Hyperbolic beta integrals”, Adv. Math., 190 (2004), 119–160, arXiv: math.QA/0303178 | DOI | MR
[41] van de Bult F. J., Rains E. M., Stokman J. V., “Properties of generalized univariate hypergeometric functions”, Comm. Math. Phys., 275 (2007), 37–95, arXiv: math.CA/0607250 | DOI | MR | Zbl
[42] van Diejen J. F., Spiridonov V. P., “Unit circle elliptic beta integrals”, Ramanujan J., 10 (2005), 187–204, arXiv: math.CA/0309279 | DOI | MR | Zbl