Nonstandard Quantum Complex Projective Line
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In our attempt to explore how the quantum nonstandard complex projective spaces $\mathbb{C}P_{q,c}^{n}$ studied by Korogodsky, Vaksman, Dijkhuizen, and Noumi are related to those arising from the geometrically constructed Bohr–Sommerfeld groupoids by Bonechi, Ciccoli, Qiu, Staffolani, and Tarlini, we were led to establish the known identification of $C\big(\mathbb{C}P_{q,c}^{1}\big) $ with the pull-back of two copies of the Toeplitz $C^*$-algebra along the symbol map in a more direct way via an operator theoretic analysis, which also provides some interesting non-obvious details, such as a prominent generator of $C\big( \mathbb{C}P_{q,c}^{1}\big) $ being a concrete weighted double shift.
Keywords: quantum homogeneous space, Toeplitz algebra, weighted shift.
@article{SIGMA_2020_16_a72,
     author = {Nicola Ciccoli and Albert Jeu-Liang Sheu},
     title = {Nonstandard {Quantum} {Complex} {Projective} {Line}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a72/}
}
TY  - JOUR
AU  - Nicola Ciccoli
AU  - Albert Jeu-Liang Sheu
TI  - Nonstandard Quantum Complex Projective Line
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a72/
LA  - en
ID  - SIGMA_2020_16_a72
ER  - 
%0 Journal Article
%A Nicola Ciccoli
%A Albert Jeu-Liang Sheu
%T Nonstandard Quantum Complex Projective Line
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a72/
%G en
%F SIGMA_2020_16_a72
Nicola Ciccoli; Albert Jeu-Liang Sheu. Nonstandard Quantum Complex Projective Line. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a72/

[1] Bonechi F., Ciccoli N., Qiu J., Tarlini M., “Quantization of Poisson manifolds from the integrability of the modular function”, Comm. Math. Phys., 331 (2014), 851–885, arXiv: 1306.4175 | DOI | MR | Zbl

[2] Bonechi F., Ciccoli N., Staffolani N., Tarlini M., “On the integration of Poisson homogeneous spaces”, J. Geom. Phys., 58 (2008), 1519–1529, arXiv: 0711.0361 | DOI | MR | Zbl

[3] Dijkhuizen M. S., Noumi M., “A family of quantum projective spaces and related $q$-hypergeometric orthogonal polynomials”, Trans. Amer. Math. Soc., 350 (1998), 3269–3296, arXiv: q-alg/9605017 | DOI | MR | Zbl

[4] Douglas R. G., Banach algebra techniques in operator theory, Pure and Applied Mathematics, 49, Academic Press, New York – London, 1972 | MR | Zbl

[5] Korogodsky L. I., Vaksman L. L., “Quantum $G$-spaces and Heisenberg algebra”, Quantum Groups (Leningrad, 1990), Lecture Notes in Math., 1510, Springer, Berlin, 1992, 56–66 | DOI | MR

[6] Murphy G. J., $C^*$-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990 | MR

[7] Podleś P., “Quantum spheres”, Lett. Math. Phys., 14 (1987), 193–202 | DOI | MR | Zbl

[8] Sheu A. J.-L., “Quantization of the Poisson ${\rm SU}(2)$ and its Poisson homogeneous space – the $2$-sphere”, Comm. Math. Phys., 135 (1991), 217–232 | DOI | MR | Zbl

[9] Sheu A. J.-L., “Groupoid approach to quantum projective spaces”, Operator Algebras and Operator Theory (Shanghai, 1997), Contemp. Math., 228, Amer. Math. Soc., Providence, RI, 1998, 341–350, arXiv: math.OA/9802083 | DOI | MR | Zbl

[10] Sheu A. J.-L., “Covariant Poisson structures on complex projective spaces”, Comm. Anal. Geom., 10 (2002), 61–78, arXiv: math.SG/9802082 | DOI | MR | Zbl