@article{SIGMA_2020_16_a70,
author = {Alexei Kanel-Belov and Sergey Malev and Louis Rowen and Roman Yavich},
title = {Evaluations of {Noncommutative} {Polynomials} on {Algebras:} {Methods} and {Problems,} and the {L'vov{\textendash}Kaplansky} {Conjecture}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a70/}
}
TY - JOUR AU - Alexei Kanel-Belov AU - Sergey Malev AU - Louis Rowen AU - Roman Yavich TI - Evaluations of Noncommutative Polynomials on Algebras: Methods and Problems, and the L'vov–Kaplansky Conjecture JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a70/ LA - en ID - SIGMA_2020_16_a70 ER -
%0 Journal Article %A Alexei Kanel-Belov %A Sergey Malev %A Louis Rowen %A Roman Yavich %T Evaluations of Noncommutative Polynomials on Algebras: Methods and Problems, and the L'vov–Kaplansky Conjecture %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a70/ %G en %F SIGMA_2020_16_a70
Alexei Kanel-Belov; Sergey Malev; Louis Rowen; Roman Yavich. Evaluations of Noncommutative Polynomials on Algebras: Methods and Problems, and the L'vov–Kaplansky Conjecture. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a70/
[1] Albert A. A., Muckenhoupt B., “On matrices of trace zeros”, Michigan Math. J., 4 (1957), 1–3 | DOI | MR | Zbl
[2] Almutairi N. B., On multilinear polynomials evaluated on quaternion algebra, Master Thesis, Kent State University, 2016
[3] Amitsur A. S., Levitzki J., “Minimal identities for algebras”, Proc. Amer. Math. Soc., 1 (1950), 449–463 | DOI | MR | Zbl
[4] Anzis B. E., Emrich Z. M., Valiveti K. G., “On the images of Lie polynomials evaluated on Lie algebras”, Linear Algebra Appl., 469 (2015), 51–75 | DOI | MR | Zbl
[5] Bahturin Yu.A., Identical relations in Lie algebras, VNU Science Press, Utrecht, 1987 | MR | Zbl
[6] Bandman T., Garion S., Grunewald F., “On the surjectivity of Engel words on ${\rm PSL}(2,q)$”, Groups Geom. Dyn., 6 (2012), 409–439, arXiv: 1008.1397 | DOI | MR | Zbl
[7] Bandman T., Garion S., Kunyavskii B., “Equations in simple matrix groups: algebra, geometry, arithmetic, dynamics”, Cent. Eur. J. Math., 12 (2014), 175–211, arXiv: 1302.4667 | DOI | MR | Zbl
[8] Bandman T., Gordeev N., Kunyavskii B., Plotkin E., “Equations in simple Lie algebras”, J. Algebra, 355 (2012), 67–79, arXiv: 1012.4106 | DOI | MR | Zbl
[9] Bandman T., Kunyavskii B., “Criteria for equidistribution of solutions of word equations on ${\rm SL}(2)$”, J. Algebra, 382 (2013), 282–302, arXiv: 1201.5260 | DOI | MR | Zbl
[10] Bandman T., Zarhin Y. G., “Surjectivity of certain word maps on ${\rm PSL}(2,\mathbb{C})$ and ${\rm SL}(2,\mathbb{C})$”, Eur. J. Math., 2 (2016), 614–643, arXiv: 1407.3447 | DOI | MR | Zbl
[11] Belov A.Ya., “Counterexamples to the Specht problem”, Sb. Math., 191 (2000), 329–340 | DOI | MR | Zbl
[12] Belov A.Ya., Borisenko V. V., Latyshev V. N., “Monomial algebras”, J. Math. Sci., 87 (1997), 3463–3575 | DOI | MR | Zbl
[13] Bokut L. A., “Unsolvability of the equality problem and subalgebras of finitely presented Lie algebras”, Math. USSR-Izv., 6 (1972), 1153–1199 | DOI | MR
[14] Bokut L. A., Chen Y., “Gröbner–Shirshov bases and their calculation”, Bull. Math. Sci., 4 (2014), 325–395, arXiv: 1303.5366 | DOI | MR | Zbl
[15] Bokut L. A., Kukin G. P., “Undecidable algorithmic problems for semigroups, groups and rings”, J. Soviet Math., 45 (1989), 871–911 | DOI | MR | Zbl
[16] Borel A., “On free subgroups of semisimple groups”, Enseign. Math., 29 (1983), 151–164 | MR | Zbl
[17] Brešar M., Commutators and images of noncommutative polynomials, arXiv: 2001.10392
[18] Brešar M., Klep I., “Values of noncommutative polynomials, Lie skew-ideals and tracial Nullstellensätze”, Math. Res. Lett., 16 (2009), 605–626, arXiv: 0810.1774 | DOI | MR | Zbl
[19] Brešar M., Procesi C., Špenko Š., “Quasi-identities on matrices and the Cayley–Hamilton polynomial”, Adv. Math., 280 (2015), 439–471, arXiv: 1212.4597 | DOI | MR | Zbl
[20] Burness T. C., Liebeck M. W., Shalev A., “The length and depth of algebraic groups”, Math. Z., 291 (2019), 741–760, arXiv: 1712.08214 | DOI | MR | Zbl
[21] Burness T. C., Liebeck M. W., Shalev A., “The length and depth of compact Lie groups”, Math. Z., 294 (2020), 1457–1476, arXiv: 1805.09893 | DOI | MR | Zbl
[22] Buzinski D., Winstanley R., “On multilinear polynomials in four variables evaluated on matrices”, Linear Algebra Appl., 439 (2013), 2712–2719, arXiv: 1511.06331 | DOI | MR | Zbl
[23] Chuang C.-L., “On ranges of polynomials in finite matrix rings”, Proc. Amer. Math. Soc., 110 (1990), 293–302 | DOI | MR | Zbl
[24] Cohn P. M., “The range of derivations on a skew field and the equation $ax-xb=c$”, J. Indian Math. Soc. (N.S.), 37 (1973), 61–69 | MR
[25] Cox D., Little J., O'Shea D., Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Mathematics, 3rd ed., Springer, New York, 2007 | DOI | MR | Zbl
[26] De Concini C., Papi P., Procesi C., “The adjoint representation inside the exterior algebra of a simple Lie algebra”, Adv. Math., 280 (2015), 21–46, arXiv: 1311.4338 | DOI | MR | Zbl
[27] De Concini C., Procesi C., The invariant theory of matrices, University Lecture Series, 69, Amer. Math. Soc., Providence, RI, 2017 | DOI | MR | Zbl
[28] Deligne P., Sullivan D., “Division algebras and the Hausdorff–Banach–Tarski paradox”, Enseign. Math., 29 (1983), 145–150 | MR | Zbl
[29] Dniester Notebook: Unsolved problems in the theory of rings and modules, 4th ed., Mathematics Institute, Russian Academy of Sciences Siberian Branch, Novosibirsk, 1993 | Zbl
[30] Donkin S., “Invariants of several matrices”, Invent. Math., 110 (1992), 389–401 | DOI | MR | Zbl
[31] Drensky V., Free algebras and PI-algebras, Graduate course in algebra, Springer-Verlag Singapore, Singapore, 2000 | MR | Zbl
[32] Drensky V., Formanek E., Polynomial identity rings, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2004 | DOI | MR | Zbl
[33] Drensky V., Kasparian A., “A new central polynomial for $3\times 3$ matrices”, Comm. Algebra, 13 (1985), 745–752 | DOI | MR | Zbl
[34] Drensky V., Piacentini Cattaneo G. M., “A central polynomial of low degree for $4\times 4$ matrices”, J. Algebra, 168 (1994), 469–478 | DOI | MR | Zbl
[35] Drensky V., Rashkova T. G., “Weak polynomial identities for the matrix algebras”, Comm. Algebra, 21 (1993), 3779–3795 | DOI | MR | Zbl
[36] Dykema K. J., Klep I., “Instances of the Kaplansky–Lvov multilinear conjecture for polynomials of degree three”, Linear Algebra Appl., 508 (2016), 272–288, arXiv: 1508.01238 | DOI | MR | Zbl
[37] Egorchenkova E., Gordeev N., “Products of three word maps on simple algebraic groups”, Arch. Math. (Basel), 112 (2019), 113–122 | DOI | MR | Zbl
[38] Ellers E. W., Gordeev N., “On the conjectures of J. Thompson and O. Ore”, Trans. Amer. Math. Soc., 350 (1998), 3657–3671 | DOI | MR | Zbl
[39] Fagundes P. S., “The images of multilinear polynomials on strictly upper triangular matrices”, Linear Algebra Appl., 563 (2019), 287–301, arXiv: 1807.09136 | DOI | MR | Zbl
[40] Fagundes P. S., de Mello T. C., “Images of multilinear polynomials of degree up to four on upper triangular matrices”, Oper. Matrices, 13 (2019), 283–292, arXiv: 1807.09421 | DOI | MR | Zbl
[41] Formanek E., “Central polynomials for matrix rings”, J. Algebra, 23 (1972), 129–132 | DOI | MR | Zbl
[42] Formanek E., The polynomial identities and invariants of $n\times n$ matrices, CBMS Regional Conference Series in Mathematics, 78, Amer. Math. Soc., Providence, RI, 1991 | DOI | MR | Zbl
[43] Giambruno A., Zaicev M., Polynomial identities and asymptotic methods, Mathematical Surveys and Monographs, 122, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl
[44] Gordeev N., “On Engel words on simple algebraic groups”, J. Algebra, 425 (2015), 215–244 | DOI | MR | Zbl
[45] Gordeev N., Kunyavskii B., Plotkin E., “Geometry of word equations in simple algebraic groups over special fields”, Russian Math. Surveys, 73 (2018), 753–796, arXiv: 1808.02303 | DOI | MR | Zbl
[46] Gordeev N., Kunyavskii B., Plotkin E., “Word maps on perfect algebraic groups”, Internat. J. Algebra Comput., 28 (2018), 1487–1515, arXiv: 1801.00381 | DOI | MR | Zbl
[47] Gordeev N., Kunyavskii B., Plotkin E., “Word maps, word maps with constants and representation varieties of one-relator groups”, J. Algebra, 500 (2018), 390–424, arXiv: 1801.00379 | DOI | MR | Zbl
[48] Gordienko A. S., Lecture notes on polynomial identities, Preprint, 2014 | MR
[49] Guterman A. E., Kuzma B., “Maps preserving zeros of matrix polynomials”, Dokl. Math., 80 (2009), 508–510 | DOI | MR | Zbl
[50] Halpin P., “Central and weak identities for matrices”, Comm. Algebra, 11 (1983), 2237–2248 | DOI | MR | Zbl
[51] Helling H., “Eine Kennzeichnung von Charakteren auf Gruppen und assoziativen Algebren”, Comm. Algebra, 1 (1974), 491–501 | DOI | MR | Zbl
[52] Herstein I. N., “On the Lie structure of an associative ring”, J. Algebra, 14 (1970), 561–571 | DOI | MR | Zbl
[53] Hui C. Y., Larsen M., Shalev A., “The Waring problem for Lie groups and Chevalley groups”, Israel J. Math., 210 (2015), 81–100, arXiv: 1404.4786 | DOI | MR | Zbl
[54] Itoh M., “Invariant theory in exterior algebras and Amitsur–Levitzki type theorems”, Adv. Math., 288 (2016), 679–701, arXiv: 1404.1980 | DOI | MR | Zbl
[55] Kanel-Belov A., Grigoriev S., Elishev A., Yu J.-T., Zhang W., “Lifting of polynomial symplectomorphisms and deformation quantization”, Comm. Algebra, 46 (2018), 3926–3938, arXiv: 1707.06450 | DOI | MR | Zbl
[56] Kanel-Belov A., Karasik Y., Rowen L. H., Computational aspects of polynomial identities, v. 1, Monographs and Research Notes in Mathematics, Kemer's theorems, 2nd ed., CRC Press, Boca Raton, FL, 2016 | MR | Zbl
[57] Kanel-Belov A., Kunyavskii B., Plotkin E., “Word equations in simple groups and polynomial equations in simple algebras”, Vestnik St. Petersburg Univ. Math., 46 (2013), 3–13, arXiv: 1304.5052 | DOI | MR | Zbl
[58] Kanel-Belov A., Malev S., Rowen L., “The images of non-commutative polynomials evaluated on $2\times2$ matrices”, Proc. Amer. Math. Soc., 140 (2012), 465–478, arXiv: 1005.0191 | DOI | MR | Zbl
[59] Kanel-Belov A., Malev S., Rowen L., “The images of multilinear polynomials evaluated on $3\times 3$ matrices”, Proc. Amer. Math. Soc., 144 (2016), 7–19, arXiv: 1306.4389 | DOI | MR | Zbl
[60] Kanel-Belov A., Malev S., Rowen L., “Power-central polynomials on matrices”, J. Pure Appl. Algebra, 220 (2016), 2164–2176, arXiv: 1310.1598 | DOI | MR | Zbl
[61] Kanel-Belov A., Malev S., Rowen L., “The images of Lie polynomials evaluated on matrices”, Comm. Algebra, 45 (2017), 4801–4808, arXiv: 1506.06792 | DOI | MR | Zbl
[62] Kanel-Belov A., Rowen L. H., Computational aspects of polynomial identities, Research Notes in Mathematics, 9, A K Peters, Ltd., Wellesley, MA, 2005 | MR | Zbl
[63] Kemer A. R., “Capelli identities and nilpotence of the radical of a finitely generated PI-algebra”, Sov. Math. Dokl., 255 (1980), 750–753 | MR | Zbl
[64] Kemer A. R., “Varieties and $Z_2$-graded algebras”, Math. USSR Izv., 25 (1985), 359–374 | DOI | MR | Zbl
[65] Klimenko E., Kunyavskii B., Morita J., Plotkin E., “Word maps in Kac–Moody setting”, Toyama Math. J., 37 (2015), 25–54, arXiv: 1506.01422 | DOI | MR | Zbl
[66] Kolesnikov P. S., “The Makar-Limanov algebraically closed skew field”, Algebra Logic, 39 (2000), 378–395 | DOI | MR | Zbl
[67] Kolesnikov P. S., “On various definitions of algebraically closed skew fields”, Algebra Logic, 40 (2001), 219–230 | DOI | MR | Zbl
[68] Kulyamin V. V., “Images of graded polynomials in matrix rings over finite group algebras”, Russian Math. Surveys, 55 (2000), 345–346 | DOI | MR | Zbl
[69] Kulyamin V. V., On images of polynomials in finite matrix rings, Ph.D. Thesis, Moscow Lomonosov State University, M., 2000 | MR
[70] Larsen M., “Word maps have large image”, Israel J. Math., 139 (2004), 149–156, arXiv: math.GR/0211302 | DOI | MR | Zbl
[71] Larsen M., Shalev A., “Word maps and Waring type problems”, J. Amer. Math. Soc., 22 (2009), 437–466, arXiv: math.GR/0701334 | DOI | MR | Zbl
[72] Larsen M., Shalev A., Tiep P. H., “The Waring problem for finite simple groups”, Ann. of Math., 174 (2011), 1885–1950 | DOI | MR | Zbl
[73] Larsen M., Shalev A., Tiep P. H., “Waring problem for finite quasisimple groups”, Int. Math. Res. Not., 2013 (2013), 2323–2348, arXiv: 1107.3341 | DOI | MR | Zbl
[74] Larsen M., Tiep P. H., “A refined Waring problem for finite simple groups”, Forum Math. Sigma, 3 (2015), e6, 22 pp., arXiv: 1312.4998 | DOI | MR | Zbl
[75] Lee T.-K., Zhou Y., “Right ideals generated by an idempotent of finite rank”, Linear Algebra Appl., 431 (2009), 2118–2126 | DOI | MR | Zbl
[76] Li C., Tsui M. C., “On the images of multilinear maps of matrices over finite-dimensional division algebras”, Linear Algebra Appl., 493 (2016), 399–410 | DOI | MR | Zbl
[77] Liebeck M. W., O'Brien E. A., Shalev A., Tiep P. H., “The Ore conjecture”, J. Eur. Math. Soc. (JEMS), 12 (2010), 939–1008 | DOI | MR | Zbl
[78] Ma A., Oliva J., “On the images of Jordan polynomials evaluated over symmetric matrices”, Linear Algebra Appl., 492 (2016), 13–25 | DOI | MR | Zbl
[79] Makar-Limanov L., “Algebraically closed skew fields”, J. Algebra, 93 (1985), 117–135 | DOI | MR | Zbl
[80] Makar-Limanov L., “An example of a skew field without a trace”, Comm. Algebra, 17 (1989), 2303–2307 | DOI | MR | Zbl
[81] Malev S., “The images of non-commutative polynomials evaluated on $2\times 2$ matrices over an arbitrary field”, J. Algebra Appl., 13 (2014), 1450004, 12 pp., arXiv: 1310.8563 | DOI | MR | Zbl
[82] Malev S., “The images of noncommutative polynomials evaluated on the quaternion algebra”, J. Algebra Appl. (to appear) , arXiv: 1906.04973 | DOI | MR
[83] Malev S., Pines C., The images of multilinear non-associative polynomials evaluated on a rock-paper-scissors algebra with unit over an arbitrary field, arXiv: 2006.04517
[84] Malle G., “The proof of Ore's conjecture (after Ellers–Gordeev and Liebeck–O'Brien–Shalev–Tiep)”, Astérisque, 361, no. 1069, 2014, 325–348 | MR | Zbl
[85] Mesyan Z., “Polynomials of small degree evaluated on matrices”, Linear Multilinear Algebra, 61 (2013), 1487–1495, arXiv: 1212.1925 | DOI | MR | Zbl
[86] Procesi C., “The invariant theory of $n\times n$ matrices”, Adv. Math., 19 (1976), 306–381 | DOI | MR | Zbl
[87] Procesi C., “On the theorem of Amitsur–Levitzki”, Israel J. Math., 207 (2015), 151–154 | DOI | MR | Zbl
[88] Razmyslov Yu.P., “Finite basing of the identities of a matrix algebra of second order over a field of characteristic zero”, Algebra Logic, 12 (1973), 47–63 | DOI | MR
[89] Razmyslov Yu.P., “On a problem of Kaplansky”, Math USSR. Izv., 7 (1973), 479–496 | DOI | MR
[90] Razmyslov Yu.P., “Trace identities of full matrix algebras over a field of characteristic zero”, Math USSR. Izv., 38 (1974), 727–760 | DOI | MR
[91] Razmyslov Yu.P., Identities of algebras and their representations, Translations of Mathematical Monographs, 138, Amer. Math. Soc., Providence, RI, 1994 | DOI | MR | Zbl
[92] Rowen L. H., Polynomial identities in ring theory, Pure and Applied Mathematics, 84, Academic Press, Inc., New York–London, 1980 | MR | Zbl
[93] Rowen L. H., Graduate algebra: commutative view, Graduate Studies in Mathematics, 73, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR | Zbl
[94] Rowen L. H., Graduate algebra: noncommutative view, Graduate Studies in Mathematics, 91, Amer. Math. Soc., Providence, RI, 2008 | DOI | MR | Zbl
[95] Saltman D. J., “On $p$-power central polynomials”, Proc. Amer. Math. Soc., 78 (1980), 11–13 | DOI | MR | Zbl
[96] Santulo E. A., Yasurmura F. Y., On the image of polynomials evaluated on incidence algebras: a counter-example and a solution, arXiv: 1902.08116
[97] Shalev A., “Commutators, words, conjugacy classes and character methods”, Turkish J. Math., 31, suppl. (2007), 131–148 | MR | Zbl
[98] Shalev A., “Word maps, conjugacy classes, and a noncommutative Waring-type theorem”, Ann. of Math., 170 (2009), 1383–1416 | DOI | MR | Zbl
[99] Shalev A., “Some results and problems in the theory of word maps”, Erdös Centennial, Bolyai Soc. Math. Stud., 25, János Bolyai Math. Soc., Budapest, 2013, 611–649 | DOI | MR
[100] Shirshov A. I., “Some questions in the theory of rings close to associative”, Russian Math. Surveys, 13:6 (1958), 3–20 | MR | Zbl
[101] Thom A., “Convergent sequences in discrete groups”, Canad. Math. Bull., 56 (2013), 424–433, arXiv: 1003.4093 | DOI | MR | Zbl
[102] Vitas D., Multilinear polynomials are surjective on algebras with surjective inner derivations, Preprint, 2020 | MR | Zbl
[103] Špenko Š., “On the image of a noncommutative polynomial”, J. Algebra, 377 (2013), 298–311, arXiv: 1212.4600 | DOI | MR
[104] Wang Y., “The images of multilinear polynomials on $2\times 2$ upper triangular matrix algebras”, Linear Multilinear Algebra, 67 (2019), 2366–2372 | DOI | MR | Zbl
[105] Wang Y., The image of arbitrary polynomials on $2\times 2$ upper triangular matrix algebras, Preprint, 2019 | MR
[106] Wang Y., Liu P. P., Bai J., “Correction: "The images of multilinear polynomials on $2\times 2$ upper triangular matrix algebras"”, Linear Multilinear Algebra, 67:11 (2019), i–vi | DOI | MR | Zbl
[107] Watkins W., “Linear maps that preserve commuting pairs of matrices”, Linear Algebra Appl., 14 (1976), 29–35 | DOI | MR | Zbl
[108] Zelmanov E., “Infinite algebras and pro-$p$ groups”, Infinite groups: geometric, combinatorial and dynamical aspects, Progr. Math., 248, Birkhäuser, Basel, 2005, 403–413 | DOI | MR | Zbl
[109] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Rings close to associative, Nauka, M., 1978 | MR
[110] Zubkov A. N., “Non-abelian free pro-$p$-groups cannot be represented by 2-by-2 matrices”, Sib. Math. J., 28 (1987), 742–747 | DOI | MR | Zbl