Mots-clés : principal comodule algebras, homotopy equivalence.
@article{SIGMA_2020_16_a7,
author = {Tomasz Brzezi\'nski and James Gaunt and Alexander Schenkel},
title = {On the {Relationship} between {Classical} and {Deformed} {Hopf} {Fibrations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a7/}
}
TY - JOUR AU - Tomasz Brzeziński AU - James Gaunt AU - Alexander Schenkel TI - On the Relationship between Classical and Deformed Hopf Fibrations JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a7/ LA - en ID - SIGMA_2020_16_a7 ER -
%0 Journal Article %A Tomasz Brzeziński %A James Gaunt %A Alexander Schenkel %T On the Relationship between Classical and Deformed Hopf Fibrations %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a7/ %G en %F SIGMA_2020_16_a7
Tomasz Brzeziński; James Gaunt; Alexander Schenkel. On the Relationship between Classical and Deformed Hopf Fibrations. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a7/
[1] Aschieri P., Bieliavsky P., Pagani C., Schenkel A., “Noncommutative principal bundles through twist deformation”, Comm. Math. Phys., 352 (2017), 287–344, arXiv: 1604.03542 | DOI | MR | Zbl
[2] Aschieri P., Schenkel A., “Noncommutative connections on bimodules and Drinfeld twist deformation”, Adv. Theor. Math. Phys., 18 (2014), 513–612, arXiv: 1210.0241 | DOI | MR | Zbl
[3] Barnes G. E., Schenkel A., Szabo R. J., “Nonassociative geometry in quasi-Hopf representation categories II: Connections and curvature”, J. Geom. Phys., 106 (2016), 234–255, arXiv: 1507.02792 | DOI | MR | Zbl
[4] Barnes G. E., Schenkel A., Szabo R. J., “Mapping spaces and automorphism groups of toric noncommutative spaces”, Lett. Math. Phys., 107 (2017), 1591–1628, arXiv: 1606.04775 | DOI | MR | Zbl
[5] Bass H., Algebraic $K$-theory, W. A. Benjamin, Inc., New York–Amsterdam, 1968 | MR | Zbl
[6] Baum P. F., Hajac P. M., Matthes R., Szymański W., Noncommutative geometry approach to principal and associated bundles, arXiv: math.DG/0701033
[7] Beggs E. J., Brzeziński T., “An explicit formula for a strong connection”, Appl. Categ. Structures, 16 (2008), 57–63, arXiv: math.QA/0606586 | DOI | MR | Zbl
[8] Beggs E. J., Majid S., Quantum Riemannian geometry, Grundlehren der mathematischen Wissenschaften, 355, Springer, Cham, 2020 | DOI | Zbl
[9] Böhm G., Brzeziński T., “Strong connections and the relative Chern–Galois character for corings”, Int. Math. Res. Not., 2005 (2005), 2579–2625, arXiv: math.RA/0503469 | DOI | MR
[10] Brain S., Landi G., “Moduli spaces of non-commutative instantons: gauging away non-commutative parameters”, Q. J. Math., 63 (2012), 41–86, arXiv: 0909.4402 | DOI | MR | Zbl
[11] Brain S., Landi G., van Suijlekom W. D., “Moduli spaces of instantons on toric noncommutative manifolds”, Adv. Theor. Math. Phys., 17 (2013), 1129–1193, arXiv: 1204.2148 | DOI | MR | Zbl
[12] Brzeziński T., “Translation map in quantum principal bundles”, J. Geom. Phys., 20 (1996), 349–370, arXiv: hep-th/9407145 | DOI | MR | Zbl
[13] Brzeziński T., Hajac P. M., “The Chern–Galois character”, C. R. Math. Acad. Sci. Paris, 338 (2004), 113–116, arXiv: math.KT/0306436 | DOI | MR | Zbl
[14] Brzeziński T., Hajac P. M., Galois-type extensions and equivariant projectivity, arXiv: 0901.0141
[15] Brzeziński T., Janelidze G., Maszczyk T., “Galois structures”, Lecture Notes on Noncommutative Geometry and Quantum Groups, notes by P. Witkowski, ed. P. M. Hajac http://www.mimuw.edu.pl/p̃wit/toknotes/toknotes.pdf
[16] Brzeziński T., Majid S., “Quantum group gauge theory on quantum spaces”, Comm. Math. Phys., 157 (1993), 591–638 , arXiv: http://projecteuclid.org/euclid.cmp/1104254023hep-th/9208007 | DOI | MR | Zbl
[17] Brzeziński T., Majid S., “Coalgebra bundles”, Comm. Math. Phys., 191 (1998), 467–492, arXiv: q-alg/9602022 | DOI | MR | Zbl
[18] Brzeziński T., Majid S., “Quantum geometry of algebra factorisations and coalgebra bundles”, Comm. Math. Phys., 213 (2000), 491–521, arXiv: math.QA/9808067 | DOI | MR | Zbl
[19] Brzeziński T., Sitarz A., “Dirac monopoles from the Matsumoto noncommutative spheres”, Group 24: Physical and Mathematical Aspects of Symmetries, Institute of Physics Conference Series, 173, eds. J.-P. Gazeau, R. Kerner, J.P. Antoine, S. Metens, J.Y. Thibon, IOP, Bristol–Philadelphia, 2003, 791–794, arXiv: math-ph/0304037
[20] Cartan H., Seminaire Cartan, E.N.S. 1949/1950, W. A. Benjamin, Inc., New York–Amsterdam, 1967 | MR
[21] Connes A., Dubois-Violette M., “Noncommutative finite-dimensional manifolds. I Spherical manifolds and related examples”, Comm. Math. Phys., 230 (2002), 539–579, arXiv: math.QA/0107070 | DOI | MR | Zbl
[22] Connes A., Landi G., “Noncommutative manifolds, the instanton algebra and isospectral deformations”, Comm. Math. Phys., 221 (2001), 141–159, arXiv: math.QA/0011194 | DOI | MR | Zbl
[23] Cuntz J., Quillen D., “Algebra extensions and nonsingularity”, J. Amer. Math. Soc., 8 (1995), 251–289 | DOI | MR | Zbl
[24] Da̧browski L., Grosse H., Hajac P. M., “Strong connections and Chern–Connes pairing in the Hopf–Galois theory”, Comm. Math. Phys., 220 (2001), 301–331, arXiv: math.QA/9912239 | DOI | MR
[25] Eisenbud D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 | DOI | MR | Zbl
[26] Hajac P. M., “Strong connections on quantum principal bundles”, Comm. Math. Phys., 182 (1996), 579–617, arXiv: hep-th/9406129 | DOI | MR | Zbl
[27] Hajac P. M., “A note on first order differential calculus on quantum principal bundles”, Czechoslovak J. Phys., 47 (1997), 1139–1143, arXiv: q-alg/9708014 | DOI | MR | Zbl
[28] Hajac P. M., Krähmer U., Matthes R., Zieliński B., “Piecewise principal comodule algebras”, J. Noncommut. Geom., 5 (2011), 591–614, arXiv: 0707.1344 | DOI | MR | Zbl
[29] Kassel C., Schneider H.-J., “Homotopy theory of Hopf Galois extensions”, Ann. Inst. Fourier (Grenoble), 55 (2005), 2521–2550, arXiv: math.QA/0402034 | DOI | MR | Zbl
[30] Landi G., An introduction to noncommutative spaces and their geometries, Lecture Notes in Phys. Monographs, 51, Springer-Verlag, Berlin, 1997, arXiv: hep-th/9701078 | DOI | MR
[31] Landi G., van Suijlekom W., “Principal fibrations from noncommutative spheres”, Comm. Math. Phys., 260 (2005), 203–225, arXiv: math.QA/0410077 | DOI | MR | Zbl
[32] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[33] Schneider H.-J., “Principal homogeneous spaces for arbitrary Hopf algebras”, Israel J. Math., 72 (1990), 167–195 | DOI | MR | Zbl
[34] Woronowicz S. L., “Compact matrix pseudogroups”, Comm. Math. Phys., 111 (1987), 613–665 | DOI | MR | Zbl
[35] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl