On the Relationship between Classical and Deformed Hopf Fibrations
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $\theta$-deformed Hopf fibration $\mathbb{S}^3_\theta\to \mathbb{S}^2$ over the commutative $2$-sphere is compared with its classical counterpart. It is shown that there exists a natural isomorphism between the corresponding associated module functors and that the affine spaces of classical and deformed connections are isomorphic. The latter isomorphism is equivariant under an appropriate notion of infinitesimal gauge transformations in these contexts. Gauge transformations and connections on associated modules are studied and are shown to be sensitive to the deformation parameter. A homotopy theoretic explanation for the existence of a close relationship between the classical and deformed Hopf fibrations is proposed.
Keywords: noncommutative geometry, noncommutative principal bundles, Hopf fibrations
Mots-clés : principal comodule algebras, homotopy equivalence.
@article{SIGMA_2020_16_a7,
     author = {Tomasz Brzezi\'nski and James Gaunt and Alexander Schenkel},
     title = {On the {Relationship} between {Classical} and {Deformed} {Hopf} {Fibrations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a7/}
}
TY  - JOUR
AU  - Tomasz Brzeziński
AU  - James Gaunt
AU  - Alexander Schenkel
TI  - On the Relationship between Classical and Deformed Hopf Fibrations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a7/
LA  - en
ID  - SIGMA_2020_16_a7
ER  - 
%0 Journal Article
%A Tomasz Brzeziński
%A James Gaunt
%A Alexander Schenkel
%T On the Relationship between Classical and Deformed Hopf Fibrations
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a7/
%G en
%F SIGMA_2020_16_a7
Tomasz Brzeziński; James Gaunt; Alexander Schenkel. On the Relationship between Classical and Deformed Hopf Fibrations. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a7/

[1] Aschieri P., Bieliavsky P., Pagani C., Schenkel A., “Noncommutative principal bundles through twist deformation”, Comm. Math. Phys., 352 (2017), 287–344, arXiv: 1604.03542 | DOI | MR | Zbl

[2] Aschieri P., Schenkel A., “Noncommutative connections on bimodules and Drinfeld twist deformation”, Adv. Theor. Math. Phys., 18 (2014), 513–612, arXiv: 1210.0241 | DOI | MR | Zbl

[3] Barnes G. E., Schenkel A., Szabo R. J., “Nonassociative geometry in quasi-Hopf representation categories II: Connections and curvature”, J. Geom. Phys., 106 (2016), 234–255, arXiv: 1507.02792 | DOI | MR | Zbl

[4] Barnes G. E., Schenkel A., Szabo R. J., “Mapping spaces and automorphism groups of toric noncommutative spaces”, Lett. Math. Phys., 107 (2017), 1591–1628, arXiv: 1606.04775 | DOI | MR | Zbl

[5] Bass H., Algebraic $K$-theory, W. A. Benjamin, Inc., New York–Amsterdam, 1968 | MR | Zbl

[6] Baum P. F., Hajac P. M., Matthes R., Szymański W., Noncommutative geometry approach to principal and associated bundles, arXiv: math.DG/0701033

[7] Beggs E. J., Brzeziński T., “An explicit formula for a strong connection”, Appl. Categ. Structures, 16 (2008), 57–63, arXiv: math.QA/0606586 | DOI | MR | Zbl

[8] Beggs E. J., Majid S., Quantum Riemannian geometry, Grundlehren der mathematischen Wissenschaften, 355, Springer, Cham, 2020 | DOI | Zbl

[9] Böhm G., Brzeziński T., “Strong connections and the relative Chern–Galois character for corings”, Int. Math. Res. Not., 2005 (2005), 2579–2625, arXiv: math.RA/0503469 | DOI | MR

[10] Brain S., Landi G., “Moduli spaces of non-commutative instantons: gauging away non-commutative parameters”, Q. J. Math., 63 (2012), 41–86, arXiv: 0909.4402 | DOI | MR | Zbl

[11] Brain S., Landi G., van Suijlekom W. D., “Moduli spaces of instantons on toric noncommutative manifolds”, Adv. Theor. Math. Phys., 17 (2013), 1129–1193, arXiv: 1204.2148 | DOI | MR | Zbl

[12] Brzeziński T., “Translation map in quantum principal bundles”, J. Geom. Phys., 20 (1996), 349–370, arXiv: hep-th/9407145 | DOI | MR | Zbl

[13] Brzeziński T., Hajac P. M., “The Chern–Galois character”, C. R. Math. Acad. Sci. Paris, 338 (2004), 113–116, arXiv: math.KT/0306436 | DOI | MR | Zbl

[14] Brzeziński T., Hajac P. M., Galois-type extensions and equivariant projectivity, arXiv: 0901.0141

[15] Brzeziński T., Janelidze G., Maszczyk T., “Galois structures”, Lecture Notes on Noncommutative Geometry and Quantum Groups, notes by P. Witkowski, ed. P. M. Hajac http://www.mimuw.edu.pl/p̃wit/toknotes/toknotes.pdf

[16] Brzeziński T., Majid S., “Quantum group gauge theory on quantum spaces”, Comm. Math. Phys., 157 (1993), 591–638 , arXiv: http://projecteuclid.org/euclid.cmp/1104254023hep-th/9208007 | DOI | MR | Zbl

[17] Brzeziński T., Majid S., “Coalgebra bundles”, Comm. Math. Phys., 191 (1998), 467–492, arXiv: q-alg/9602022 | DOI | MR | Zbl

[18] Brzeziński T., Majid S., “Quantum geometry of algebra factorisations and coalgebra bundles”, Comm. Math. Phys., 213 (2000), 491–521, arXiv: math.QA/9808067 | DOI | MR | Zbl

[19] Brzeziński T., Sitarz A., “Dirac monopoles from the Matsumoto noncommutative spheres”, Group 24: Physical and Mathematical Aspects of Symmetries, Institute of Physics Conference Series, 173, eds. J.-P. Gazeau, R. Kerner, J.P. Antoine, S. Metens, J.Y. Thibon, IOP, Bristol–Philadelphia, 2003, 791–794, arXiv: math-ph/0304037

[20] Cartan H., Seminaire Cartan, E.N.S. 1949/1950, W. A. Benjamin, Inc., New York–Amsterdam, 1967 | MR

[21] Connes A., Dubois-Violette M., “Noncommutative finite-dimensional manifolds. I Spherical manifolds and related examples”, Comm. Math. Phys., 230 (2002), 539–579, arXiv: math.QA/0107070 | DOI | MR | Zbl

[22] Connes A., Landi G., “Noncommutative manifolds, the instanton algebra and isospectral deformations”, Comm. Math. Phys., 221 (2001), 141–159, arXiv: math.QA/0011194 | DOI | MR | Zbl

[23] Cuntz J., Quillen D., “Algebra extensions and nonsingularity”, J. Amer. Math. Soc., 8 (1995), 251–289 | DOI | MR | Zbl

[24] Da̧browski L., Grosse H., Hajac P. M., “Strong connections and Chern–Connes pairing in the Hopf–Galois theory”, Comm. Math. Phys., 220 (2001), 301–331, arXiv: math.QA/9912239 | DOI | MR

[25] Eisenbud D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[26] Hajac P. M., “Strong connections on quantum principal bundles”, Comm. Math. Phys., 182 (1996), 579–617, arXiv: hep-th/9406129 | DOI | MR | Zbl

[27] Hajac P. M., “A note on first order differential calculus on quantum principal bundles”, Czechoslovak J. Phys., 47 (1997), 1139–1143, arXiv: q-alg/9708014 | DOI | MR | Zbl

[28] Hajac P. M., Krähmer U., Matthes R., Zieliński B., “Piecewise principal comodule algebras”, J. Noncommut. Geom., 5 (2011), 591–614, arXiv: 0707.1344 | DOI | MR | Zbl

[29] Kassel C., Schneider H.-J., “Homotopy theory of Hopf Galois extensions”, Ann. Inst. Fourier (Grenoble), 55 (2005), 2521–2550, arXiv: math.QA/0402034 | DOI | MR | Zbl

[30] Landi G., An introduction to noncommutative spaces and their geometries, Lecture Notes in Phys. Monographs, 51, Springer-Verlag, Berlin, 1997, arXiv: hep-th/9701078 | DOI | MR

[31] Landi G., van Suijlekom W., “Principal fibrations from noncommutative spheres”, Comm. Math. Phys., 260 (2005), 203–225, arXiv: math.QA/0410077 | DOI | MR | Zbl

[32] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[33] Schneider H.-J., “Principal homogeneous spaces for arbitrary Hopf algebras”, Israel J. Math., 72 (1990), 167–195 | DOI | MR | Zbl

[34] Woronowicz S. L., “Compact matrix pseudogroups”, Comm. Math. Phys., 111 (1987), 613–665 | DOI | MR | Zbl

[35] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl