Motivic Donaldson–Thomas Invariants of Parabolic Higgs Bundles and Parabolic Connections on a Curve
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X$ be a smooth projective curve over a field of characteristic zero and let $D$ be a non-empty set of rational points of $X$. We calculate the motivic classes of moduli stacks of semistable parabolic bundles with connections on $(X,D)$ and motivic classes of moduli stacks of semistable parabolic Higgs bundles on $(X,D)$. As a by-product we give a criteria for non-emptiness of these moduli stacks, which can be viewed as a version of the Deligne–Simpson problem.
Keywords: parabolic Higgs bundles, parabolic bundles with connections, motivic classes, Donaldson–Thomas invariants, Macdonald polynomials.
@article{SIGMA_2020_16_a69,
     author = {Roman Fedorov and Alexander Soibelman and Yan Soibelman},
     title = {Motivic {Donaldson{\textendash}Thomas} {Invariants} of {Parabolic} {Higgs} {Bundles} and {Parabolic} {Connections} on a {Curve}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a69/}
}
TY  - JOUR
AU  - Roman Fedorov
AU  - Alexander Soibelman
AU  - Yan Soibelman
TI  - Motivic Donaldson–Thomas Invariants of Parabolic Higgs Bundles and Parabolic Connections on a Curve
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a69/
LA  - en
ID  - SIGMA_2020_16_a69
ER  - 
%0 Journal Article
%A Roman Fedorov
%A Alexander Soibelman
%A Yan Soibelman
%T Motivic Donaldson–Thomas Invariants of Parabolic Higgs Bundles and Parabolic Connections on a Curve
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a69/
%G en
%F SIGMA_2020_16_a69
Roman Fedorov; Alexander Soibelman; Yan Soibelman. Motivic Donaldson–Thomas Invariants of Parabolic Higgs Bundles and Parabolic Connections on a Curve. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a69/

[1] Atiyah M. F., “On the Krull–Schmidt theorem with application to sheaves”, Bull. Soc. Math. France, 84 (1956), 307–317 | DOI | MR | Zbl

[2] Atiyah M. F., “Complex analytic connections in fibre bundles”, Trans. Amer. Math. Soc., 85 (1957), 181–207 | DOI | MR | Zbl

[3] Behrend K., Dhillon A., “On the motivic class of the stack of bundles”, Adv. Math., 212 (2007), 617–644 | DOI | MR | Zbl

[4] Biquard O., “Fibrés de {H}iggs et connexions intégrables: le cas logarithmique (diviseur lisse)”, Ann. Sci. École Norm. Sup. (4), 30 (1997), 41–96 | DOI | MR | Zbl

[5] Biquard O., Boalch P., “Wild non-abelian Hodge theory on curves”, Compos. Math., 140 (2004), 179–204, arXiv: math.DG/0111098 | DOI | MR | Zbl

[6] Chuang W.-Y., Diaconescu D.-E., Donagi R., Pantev T., “Parabolic refined invariants and Macdonald polynomials”, Comm. Math. Phys., 335 (2015), 1323–1379, arXiv: 1311.3624 | DOI | MR | Zbl

[7] Crawley-Boevey W., “Indecomposable parabolic bundles and the existence of matrices in prescribed conjugacy class closures with product equal to the identity”, Publ. Math. Inst. Hautes Études Sci., 100 (2004), 171–207, arXiv: math.AG/0307246 | DOI | MR | Zbl

[8] Crawley-Boevey W., “Kac's theorem for weighted projective lines”, J. Eur. Math. Soc. (JEMS), 12 (2010), 1331–1345, arXiv: math.AG/0512078 | DOI | MR | Zbl

[9] Dobrovolska G., Ginzburg V., Travkin R., Moduli spaces, indecomposable objects and potentials over a finite field, arXiv: 1612.01733

[10] Ekedahl T., A geometric invariant of a finite group, arXiv: 0903.3148

[11] Ekedahl T., The Grothendieck group of algebraic stacks, arXiv: 0903.3143

[12] Fedorov R., Soibelman A., Soibelman Y., “Motivic classes of moduli of Higgs bundles and moduli of bundles with connections”, Commun. Number Theory Phys., 12 (2018), 687–766, arXiv: 1705.04890 | DOI | MR

[13] Garsia A. M., Haiman M., “A remarkable $q,t$-Catalan sequence and $q$-Lagrange inversion”, J. Algebraic Combin., 5 (1996), 191–244 | DOI | MR | Zbl

[14] Haglund J., Haiman M., Loehr N., “A combinatorial formula for Macdonald polynomials”, J. Amer. Math. Soc., 18 (2005), 735–761, arXiv: math.CO/0409538 | DOI | MR | Zbl

[15] Harder G., “Chevalley groups over function fields and automorphic forms”, Ann. of Math., 100 (1974), 249–306 | DOI | MR | Zbl

[16] Harder G., Narasimhan M. S., “On the cohomology groups of moduli spaces of vector bundles on curves”, Math. Ann., 212 (1975), 215–248 | DOI | MR | Zbl

[17] Hoskins V., Lehalleur S. P., On the Voevodsky motive of the moduli space of Higgs bundles on a curve, arXiv: 1910.04440

[18] Hoskins V., Schaffhauser F., Rational points of quiver moduli spaces, arXiv: 1704.08624 | MR

[19] Joyce D., “Motivic invariants of Artin stacks and ‘stack functions’”, Q. J. Math., 58 (2007), 345–392, arXiv: math.AG/0509722 | DOI | MR | Zbl

[20] Kac V. G., “Infinite root systems, representations of graphs and invariant theory. II”, J. Algebra, 78 (1982), 141–162 | DOI | MR | Zbl

[21] Kapranov M., The elliptic curve in the $S$-duality theory and Eisenstein series for Kac–Moody groups, arXiv: math.AG/0001005

[22] Kontsevich M., Soibelman Y., Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, arXiv: 0811.2435 | MR

[23] Kontsevich M., Soibelman Y., “Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants”, Commun. Number Theory Phys., 5 (2011), 231–352, arXiv: 1006.2706 | DOI | MR | Zbl

[24] Kostov V. P., “The Deligne–Simpson problem – a survey”, J. Algebra, 281 (2004), 83–108, arXiv: math.RA/0206298 | DOI | MR | Zbl

[25] Kresch A., “Cycle groups for Artin stacks”, Invent. Math., 138 (1999), 495–536, arXiv: math.AG/9810166 | DOI | MR | Zbl

[26] Larsen M., Lunts V. A., “Rationality criteria for motivic zeta functions”, Compos. Math., 140 (2004), 1537–1560, arXiv: math.AG/0212158 | DOI | MR | Zbl

[27] Laumon G., Moret-Bailly L., Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 39, Springer-Verlag, Berlin, 2000 | DOI | MR

[28] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979 | MR

[29] Mellit A., “Integrality of Hausel–Letellier–Villegas kernels”, Duke Math. J., 167 (2018), 3171–3205, arXiv: 1605.01299 | DOI | MR | Zbl

[30] Mellit A., “Poincaré polynomials of character varieties, Macdonald polynomials and affine Springer fibers”, Ann. of Math., 192 (2020), 165–228, arXiv: 1710.04513 | DOI | MR | Zbl

[31] Mellit A., “Poincaré polynomials of moduli spaces of Higgs bundles and character varieties (no punctures)”, Invent. Math., 221 (2020), 301–327, arXiv: 1707.04214 | DOI | MR | Zbl

[32] Mihai A., “Sur le résidu et la monodromie d'une connexion méromorphe”, C. R. Acad. Sci. Paris Sér. A-B, 281 (1975), A435–A438 | MR

[33] Mihai A., “Sur les connexions méromorphes”, Rev. Roumaine Math. Pures Appl., 23 (1978), 215–232 | MR | Zbl

[34] Mozgovoy S., Schiffmann O., Counting Higgs bundles, arXiv: 1411.2101

[35] Nakajima H., “Hyper-Kähler structures on moduli spaces of parabolic Higgs bundles on Riemann surfaces”, Moduli of Vector Bundles (Sanda, 1994; Kyoto, 1994), Lecture Notes in Pure and Appl. Math., 179, Dekker, New York, 1996, 199–208 | MR | Zbl

[36] Ren J., Soibelman Y., “Cohomological Hall algebras, semicanonical bases and Donaldson–Thomas invariants for 2-dimensional Calabi–Yau categories (with an appendix by Ben Davison)”, Algebra, Geometry, and Physics in the 21st Century, Progr. Math., 324, Birkhäuser/Springer, Cham, 2017, 261–293, arXiv: 1508.06068 | DOI | MR | Zbl

[37] Schiffmann O., “Indecomposable vector bundles and stable Higgs bundles over smooth projective curves”, Ann. of Math., 183 (2016), 297–362, arXiv: 1406.3839 | DOI | MR | Zbl

[38] Serre J.-P., Algebraic groups and class fields, Graduate Texts in Mathematics, 117, Springer-Verlag, New York, 1988 | DOI | MR | Zbl

[39] Simpson C. T., “Harmonic bundles on noncompact curves”, J. Amer. Math. Soc., 3 (1990), 713–770 | DOI | MR | Zbl

[40] Simpson C. T., “Products of matrices”, Differential Geometry, Global Analysis, and Topology (Halifax, NS, 1990), CMS Conf. Proc., 12, Amer. Math. Soc., Providence, RI, 1991, 157–185 | MR

[41] Simpson C. T., “Moduli of representations of the fundamental group of a smooth projective variety. I”, Inst. Hautes Études Sci. Publ. Math., 1994, 47–129 | DOI | MR | Zbl

[42] Simpson C. T., “Katz's middle convolution algorithm”, Pure Appl. Math. Q, 5 (2009), 781–852, arXiv: math.AG/0610526 | DOI | MR | Zbl

[43] Sorger C., “Lectures on moduli of principal $G$-bundles over algebraic curves”, School on Algebraic Geometry (Trieste, 1999), ICTP Lect. Notes, 1, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2000, 1–57 | MR | Zbl