@article{SIGMA_2020_16_a68,
author = {Claudio Bartocci and Ugo Bruzzo and Valeriano Lanza and Claudio L. S. Rava},
title = {On the {Irreducibility} of {Some} {Quiver} {Varieties}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a68/}
}
TY - JOUR AU - Claudio Bartocci AU - Ugo Bruzzo AU - Valeriano Lanza AU - Claudio L. S. Rava TI - On the Irreducibility of Some Quiver Varieties JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a68/ LA - en ID - SIGMA_2020_16_a68 ER -
%0 Journal Article %A Claudio Bartocci %A Ugo Bruzzo %A Valeriano Lanza %A Claudio L. S. Rava %T On the Irreducibility of Some Quiver Varieties %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a68/ %G en %F SIGMA_2020_16_a68
Claudio Bartocci; Ugo Bruzzo; Valeriano Lanza; Claudio L. S. Rava. On the Irreducibility of Some Quiver Varieties. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a68/
[1] Bartocci C., Bruzzo U., Lanza V., Rava C. L.S., “Hilbert schemes of points of ${\mathcal O}_{{\mathbb P}^1}(-n)$ as quiver varieties”, J. Pure Appl. Algebra, 221 (2017), 2132–2155, arXiv: 1504:02987 | DOI | MR | Zbl
[2] Bartocci C., Bruzzo U., Rava C. L. S., “Monads for framed sheaves on Hirzebruch surfaces”, Adv. Geom., 15 (2015), 55–76, arXiv: 1205.3613 | DOI | MR | Zbl
[3] Bartocci C., Lanza V., Rava C. L. S., “Moduli spaces of framed sheaves and quiver varieties”, J. Geom. Phys., 118 (2017), 20–39, arXiv: 1610.02731 | DOI | MR | Zbl
[4] Bruzzo U., Fucito F., Morales J. F., Tanzini A., “Multi-instanton calculus and equivariant cohomology”, J. High Energy Phys., 2003:5 (2003), 054, 24 pp., arXiv: hep-th/0211108 | DOI | MR
[5] Crawley-Boevey W., “Geometry of the moment map for representations of quivers”, Compositio Math., 126 (2001), 257–293 | DOI | MR | Zbl
[6] Dorey N., Hollowood T. J., Khoze V. V., Mattis M. P., “The calculus of many instantons”, Phys. Rep., 371 (2002), 231–459, arXiv: hep-th/0206063 | DOI | MR | Zbl
[7] Fogarty J., “Algebraic families on an algebraic surface”, Amer. J. Math., 90 (1968), 511–521 | DOI | MR | Zbl
[8] Ginzburg V., “Lectures on Nakajima's quiver varieties”, Geometric Methods in Representation Theory, v. I, Sémin. Congr., 24, Soc. Math. France, Paris, 2012, 145–219, arXiv: 0905.0686 | MR | Zbl
[9] King A. D., “Moduli of representations of finite-dimensional algebras”, Quart. J. Math. Oxford, 45 (1994), 515–530 | DOI | MR | Zbl
[10] Kuznetsov A., “Quiver varieties and Hilbert schemes”, Mosc. Math. J., 7 (2007), 673–697, arXiv: math.AG/0111092 | DOI | MR | Zbl
[11] Nakajima H., “Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras”, Duke Math. J., 76 (1994), 365–416 | DOI | MR | Zbl
[12] Nakajima H., Lectures on Hilbert schemes of points on surfaces, University Lecture Series, 18, Amer. Math. Soc., Providence, RI, 1999 | DOI | MR | Zbl
[13] Nakajima H., “Introduction to quiver varieties – for ring and representation theorists”, Proceedings of the 49th Symposium on Ring Theory and Representation Theory, Symp. Ring Theory Represent. Theory Organ. Comm. (Shimane, 2017), 96–114, arXiv: 1611.10000 | MR | Zbl
[14] Nekrasov N. A., “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7 (2003), 831–864 , arXiv: http://projecteuclid.org/euclid.atmp/1111510432hep-th/0206161 | DOI | MR | Zbl
[15] Ngo N. V., Šivic K., “On varieties of commuting nilpotent matrices”, Linear Algebra Appl., 452 (2014), 237–262, arXiv: 1308:4438 | DOI | MR | Zbl
[16] Okonek C., Schneider M., Spindler H., Vector bundles on complex projective spaces, Progress in Mathematics, 3, Birkhäuser, Boston, Mass., 1980 | DOI | MR | Zbl
[17] Rudakov A., “Stability for an abelian category”, J. Algebra, 197 (1997), 231–245 | DOI | MR | Zbl