@article{SIGMA_2020_16_a67,
author = {Yukai Sun and Xianzhe Dai},
title = {Gromov {Rigidity} of {Bi-Invariant} {Metrics} on {Lie} {Groups} and {Homogeneous} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a67/}
}
TY - JOUR AU - Yukai Sun AU - Xianzhe Dai TI - Gromov Rigidity of Bi-Invariant Metrics on Lie Groups and Homogeneous Spaces JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a67/ LA - en ID - SIGMA_2020_16_a67 ER -
Yukai Sun; Xianzhe Dai. Gromov Rigidity of Bi-Invariant Metrics on Lie Groups and Homogeneous Spaces. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a67/
[1] Cheeger J., Ebin D. G., Comparison theorems in Riemannian geometry, AMS Chelsea Publishing, Providence, RI, 2008 | DOI | MR | Zbl
[2] Dai X., Wang X., Wei G., “On the variational stability of Kähler–Einstein metrics”, Comm. Anal. Geom., 15 (2007), 669–693 | DOI | MR | Zbl
[3] Goette S., “Scalar curvature estimates by parallel alternating torsion”, Trans. Amer. Math. Soc., 363 (2011), 165–183, arXiv: 0709.4586 | DOI | MR | Zbl
[4] Goette S., Semmelmann U., “Scalar curvature estimates for compact symmetric spaces”, Differential Geom. Appl., 16 (2002), 65–78, arXiv: math.DG/0010199 | DOI | MR | Zbl
[5] Gromov M., “Positive curvature, macroscopic dimension, spectral gaps and higher signatures”, Functional Analysis on the Eve of the 21st Century (New Brunswick, NJ, 1993), v. II, Progr. Math., 132, Birkhäuser Boston, Boston, MA, 1996, 1–213 | DOI | MR | Zbl
[6] Gromov M., Four lectures on scalar curvature, arXiv: 1908.10612
[7] Gromov M., Lawson Jr. H.B., “Spin and scalar curvature in the presence of a fundamental group. I”, Ann. of Math., 111 (1980), 209–230 | DOI | MR | Zbl
[8] Kramer W., “The scalar curvature on totally geodesic fiberings”, Ann. Global Anal. Geom., 18 (2000), 589–600 | DOI | MR | Zbl
[9] Listing M., Scalar curvature on compact symmetric spaces, arXiv: 1007.1832
[10] Llarull M., “Sharp estimates and the Dirac operator”, Math. Ann., 310 (1998), 55–71 | DOI | MR | Zbl
[11] Milnor J., “Curvatures of left invariant metrics on Lie groups”, Adv. Math., 21 (1976), 293–329 | DOI | MR | Zbl
[12] Min-Oo M., “Scalar curvature rigidity of certain symmetric spaces”, Geometry, Topology, and Dynamics (Montreal, PQ, 1995), CRM Proc. Lecture Notes, 15, Amer. Math. Soc., Providence, RI, 1998, 127–136 | DOI | MR | Zbl
[13] Schoen R., Yau S. T., “Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature”, Ann. of Math., 110 (1979), 127–142 | DOI | MR | Zbl
[14] Schoen R., Yau S. T., “On the structure of manifolds with positive scalar curvature”, Manuscripta Math., 28 (1979), 159–183 | DOI | MR | Zbl
[15] Wang M. Y., Ziller W., “Existence and nonexistence of homogeneous Einstein metrics”, Invent. Math., 84 (1986), 177–194 | DOI | MR | Zbl