Cyclic Sieving and Cluster Duality of Grassmannian
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a decorated configuration space $\mathscr{C}\!\mathrm{onf}_n^\times(a)$ with a potential function $\mathcal{W}$. We prove the cluster duality conjecture of Fock–Goncharov for Grassmannians, that is, the tropicalization of $\big(\mathscr{C}\!\mathrm{onf}_n^\times(a), \mathcal{W}\big)$ canonically parametrizes a linear basis of the homogeneous coordinate ring of the Grassmannian $\operatorname{Gr}_a(n)$ with respect to the Plücker embedding. We prove that $\big(\mathscr{C}\!\mathrm{onf}_n^\times(a), \mathcal{W}\big)$ is equivalent to the mirror Landau–Ginzburg model of the Grassmannian considered by Eguchi–Hori–Xiong, Marsh–Rietsch and Rietsch–Williams. As an application, we show a cyclic sieving phenomenon involving plane partitions under a sequence of piecewise-linear toggles.
Keywords: cluster algebra, cluster duality, mirror symmetry, Grassmannian, cyclic sieving phenomenon.
@article{SIGMA_2020_16_a66,
     author = {Linhui Shen and Daping Weng},
     title = {Cyclic {Sieving} and {Cluster} {Duality} of {Grassmannian}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a66/}
}
TY  - JOUR
AU  - Linhui Shen
AU  - Daping Weng
TI  - Cyclic Sieving and Cluster Duality of Grassmannian
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a66/
LA  - en
ID  - SIGMA_2020_16_a66
ER  - 
%0 Journal Article
%A Linhui Shen
%A Daping Weng
%T Cyclic Sieving and Cluster Duality of Grassmannian
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a66/
%G en
%F SIGMA_2020_16_a66
Linhui Shen; Daping Weng. Cyclic Sieving and Cluster Duality of Grassmannian. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a66/

[1] Berenstein A., Fomin S., Zelevinsky A., “Cluster algebras. III Upper bounds and double Bruhat cells”, Duke Math. J., 126 (2005), 1–52, arXiv: math.RT/0305434 | DOI | MR | Zbl

[2] Eguchi T., Hori K., Xiong C. S., “Gravitational quantum cohomology”, Internat. J. Modern Phys. A, 12 (1997), 1743–1782, arXiv: hep-th/9605225 | DOI | MR | Zbl

[3] Einstein D., Propp J., Combinatorial, piecewise-linear, and birational homomesy for products of two chains, arXiv: 1310.5294

[4] Eisenbud D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[5] Fock V. V., Goncharov A. B., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 865–930, arXiv: math.AG/0311245 | DOI | MR | Zbl

[6] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl

[7] Fontaine B., Kamnitzer J., “Cyclic sieving, rotation, and geometric representation theory”, Selecta Math. (N.S.), 20 (2014), 609–625, arXiv: 1212.1314 | DOI | MR | Zbl

[8] Fulton W., Harris J., Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | DOI | MR | Zbl

[9] Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, 167, Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl

[10] Gekhtman M., Yakimov M., “Completeness of determinantal Hamiltonian flows on the matrix affine Poisson space”, Lett. Math. Phys., 90 (2009), 161–173, arXiv: 0809.4650 | DOI | MR | Zbl

[11] Gel'fand I. M., Tsetlin M. L., “Finite-dimensional representations of the group of unimodular matrices”, Dokl. Akad. Nauk USSR, 71 (1950), 825–828 | MR | Zbl

[12] Goncharov A., Shen L., Quantum geometry of moduli spaces of local systems and representation theory, arXiv: 1904.10491 | MR

[13] Goncharov A., Shen L., “Geometry of canonical bases and mirror symmetry”, Invent. Math., 202 (2015), 487–633, arXiv: 1309.5922 | DOI | MR | Zbl

[14] Goncharov A., Shen L., “Donaldson–Thomas transformations of moduli spaces of G-local systems”, Adv. Math., 327 (2018), 225–348, arXiv: 1602.06479 | DOI | MR | Zbl

[15] Griffiths P., Harris J., Principles of algebraic geometry, Wiley Classics Library, John Wiley Sons, Inc., New York, 1994 | DOI | MR | Zbl

[16] Gross M., Hacking P., Keel S., “Birational geometry of cluster algebras”, Algebr. Geom., 2 (2015), 137–175, arXiv: 1309.2573 | DOI | MR | Zbl

[17] Gross M., Hacking P., Keel S., Kontsevich M., “Canonical bases for cluster algebras”, J. Amer. Math. Soc., 31 (2018), 497–608, arXiv: 1411.1394 | DOI | MR | Zbl

[18] Hopkins S., Cyclic sieving for plane partitions and symmetry, arXiv: 1907.09337 | MR

[19] Keller B., “The periodicity conjecture for pairs of Dynkin diagrams”, Ann. of Math., 177 (2013), 111–170, arXiv: 1001.1531 | DOI | MR | Zbl

[20] Keller B., Quiver mutation and combinatorial DT-invariants, arXiv: 1709.03143

[21] Marsh R. J., Rietsch K., “The $B$-model connection and mirror symmetry for Grassmannians”, Adv. Math., 366 (2020), 107027, 131 pp., arXiv: 1307.1085 | DOI | MR | Zbl

[22] Marsh R. J., Scott J. S., “Twists of Plücker coordinates as dimer partition functions”, Comm. Math. Phys., 341 (2016), 821–884, arXiv: 1309.6630 | DOI | MR | Zbl

[23] Morier-Genoud S., Ovsienko V., Tabachnikov S., “2-frieze patterns and the cluster structure of the space of polygons”, Ann. Inst. Fourier (Grenoble), 62 (2012), 937–987, arXiv: 1008.3359 | DOI | MR | Zbl

[24] Musiker G., Roby T., “Paths to understanding birational rowmotion on products of two chains”, Algebr. Comb., 2 (2019), 275–304, arXiv: 1801.03877 | DOI | MR | Zbl

[25] Nakanishi T., Zelevinsky A., “On tropical dualities in cluster algebras”, Algebraic Groups and Quantum Groups, Contemp. Math., 565, Amer. Math. Soc., Providence, RI, 2012, 217–226, arXiv: 1101.3736 | DOI | MR | Zbl

[26] Postnikov A., Total positivity, Grassmannians, and networks, arXiv: math.CO/0609764

[27] Reiner V., Stanton D., White D., “The cyclic sieving phenomenon”, J. Combin. Theory Ser. A, 108 (2004), 17–50 | DOI | MR | Zbl

[28] Rhoades B., “Cyclic sieving, promotion, and representation theory”, J. Combin. Theory Ser. A, 117 (2010), 38–76, arXiv: 1005.2568 | DOI | MR | Zbl

[29] Rietsch K., Williams L., “Newton–Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians”, Duke Math. J., 168 (2019), 3437–3527, arXiv: 1712.00447 | DOI | MR | Zbl

[30] Roby T., “Dynamical algebraic combinatorics and the homomesy phenomenon”, Recent Trends in Combinatorics, IMA Vol. Math. Appl., 159, Springer, Cham, 2016, 619–652 | DOI | MR | Zbl

[31] Sagan B. E., “The cyclic sieving phenomenon: a survey, in Surveys in Combinatorics 2011”, London Math. Soc. Lecture Note Ser., 392, Cambridge University Press, Cambridge, 2011, 183–233, arXiv: 1008.0790 | MR | Zbl

[32] Scott J. S., “Grassmannians and cluster algebras”, Proc. London Math. Soc., 92 (2006), 345–380, arXiv: math.CO/0311148 | DOI | MR | Zbl

[33] Shen L., “Stasheff polytopes and the coordinate ring of the cluster $\mathcal X$-variety of type $A_n$”, Selecta Math. (N.S.), 20 (2014), 929–959, arXiv: 1104.3528 | DOI | MR | Zbl

[34] Thurston D. P., “From dominoes to hexagons”, Proceedings of the 2014 Maui and 2015 Qinhuangdao Conferences in Honour of Vaughan FR Jones' 60th Birthday, Proc. Centre Math. Appl. Austral. Nat. Univ., 46, Austral. Nat. Univ., Canberra, 2017, 399–414, arXiv: math.CO/0405482 | MR | Zbl

[35] Weng D., Donaldson–Thomas transformation of Grassmannian, arXiv: 1603.00972