Dendriform Algebras Relative to a Semigroup
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Loday's dendriform algebras and its siblings pre-Lie and zinbiel have received attention over the past two decades. In recent literature, there has been interest in a generalization of these types of algebra in which each individual operation is replaced by a family of operations indexed by a fixed semigroup $S$. The purpose of this note is twofold. First, we add to the existing work by showing that a similar extension is possible already for the most familiar types of algebra: commutative, associative, and Lie. Second, we show that these concepts arise naturally and in a unified manner from a categorical perspective. For this, one simply has to consider the standard types of algebra but in reference to the monoidal category of $S$-graded vector spaces.
Keywords: dendriform algebra, monoidal category, dimonoidal category.
@article{SIGMA_2020_16_a65,
     author = {Marcelo Aguiar},
     title = {Dendriform {Algebras} {Relative} to a {Semigroup}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a65/}
}
TY  - JOUR
AU  - Marcelo Aguiar
TI  - Dendriform Algebras Relative to a Semigroup
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a65/
LA  - en
ID  - SIGMA_2020_16_a65
ER  - 
%0 Journal Article
%A Marcelo Aguiar
%T Dendriform Algebras Relative to a Semigroup
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a65/
%G en
%F SIGMA_2020_16_a65
Marcelo Aguiar. Dendriform Algebras Relative to a Semigroup. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a65/

[1] Aguiar M., “Pre-Poisson algebras”, Lett. Math. Phys., 54 (2000), 263–277 | DOI | MR | Zbl

[2] Aguiar M., Mahajan S., Monoidal functors, species and Hopf algebras, CRM Monograph Series, 29, Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl

[3] Bai C., Bellier O., Guo L., Ni X., “Splitting of operations, Manin products, and Rota–Baxter operators”, Int. Math. Res. Not., 2013 (2013), 485–524, arXiv: 1106.6080 | DOI | MR | Zbl

[4] Chapoton F., “Un endofoncteur de la catégorie des opérades”, Dialgebras and Related Operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, 105–110 | DOI | MR | Zbl

[5] Cockett J. R. B., Seely R. A. G., “Weakly distributive categories”, Applications of Categories in Computer Science (Durham, 1991), London Math. Soc. Lecture Note Ser., 177, Cambridge University Press, Cambridge, 1992, 45–65 | DOI | MR | Zbl

[6] Cockett J. R. B., Seely R. A. G., “Weakly distributive categories”, J. Pure Appl. Algebra, 114 (1997), 133–173 | DOI | MR | Zbl

[7] Cockett J. R. B., Seely R. A. G., “Linearly distributive functors”, J. Pure Appl. Algebra, 143 (1999), 155–203 | DOI | MR | Zbl

[8] Ebrahimi-Fard K., “Loday-type algebras and the Rota–Baxter relation”, Lett. Math. Phys., 61 (2002), 139–147, arXiv: math-ph/0207043 | DOI | MR | Zbl

[9] Ebrahimi-Fard K., Gracia-Bondía J.M., Patras F., “A Lie theoretic approach to renormalization”, Comm. Math. Phys., 276 (2007), 519–549, arXiv: hep-th/0609035 | DOI | MR | Zbl

[10] Foissy L., Generalized dendriform algebras and typed binary trees, arXiv: 2002.12120 | MR

[11] Gerstenhaber M., “The cohomology structure of an associative ring”, Ann. of Math., 78 (1963), 267–288 | DOI | MR | Zbl

[12] Gubarev V. Yu., Kolesnikov P. S., “Embedding of dendriform algebras into Rota–Baxter algebras”, Cent. Eur. J. Math., 11 (2013), 226–245, arXiv: 1107.6021 | DOI | MR | Zbl

[13] Gubarev V. Yu., Kolesnikov P. S., “Operads of decorated trees and their duals”, Comment. Math. Univ. Carolin., 55 (2014), 421–445, arXiv: 1401.3534 | DOI | MR | Zbl

[14] Guo L., “Operated semigroups, Motzkin paths and rooted trees”, J. Algebraic Combin., 29 (2009), 35–62, arXiv: 0710.0429 | DOI | MR | Zbl

[15] Joyal A., Street R., “Braided tensor categories”, Adv. Math., 102 (1993), 20–78 | DOI | MR | Zbl

[16] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[17] Loday J.-L., “Dialgebras”, Dialgebras and Related Operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, 7–66, arXiv: math.QA/0102053 | DOI | MR | Zbl

[18] Loday J.-L., Ronco M., “Trialgebras and families of polytopes”, Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory, Contemp. Math., 346, Amer. Math. Soc., Providence, RI, 2004, 369–398, arXiv: math.AT/0205043 | DOI | MR | Zbl

[19] Mac Lane S., Categories for the working mathematician, Graduate Texts in Mathematics, 5, 2nd ed., Springer-Verlag, New York, 1998 | MR | Zbl

[20] Manchon D., Zhang Y., Free pre-Lie family algebras, arXiv: 2003.00917

[21] Street R., “Monoidal categories in, and linking, geometry and algebra”, Bull. Belg. Math. Soc. Simon Stevin, 19 (2012), 769–821 | DOI | MR

[22] Vinberg É. B., “The theory of homogeneous convex cones”, Trudy Moskov. Mat. Obšč, 12, 1963, 303–358 | MR | Zbl

[23] Zhang Y., Gao X., “Free Rota–Baxter family algebras and (tri)dendriform family algebras”, Pacific J. Math., 301 (2019), 741–766 | DOI | MR | Zbl

[24] Zhang Y., Gao X., Guo L., “Matching Rota–Baxter algebras, matching dendriform algebras and matching pre-Lie algebras”, J. Algebra, 552 (2020), 134–170, arXiv: 1909.10577 | DOI | MR | Zbl

[25] Zhang Y., Gao X., Manchon D., “Free (tri)dendriform family algebras”, J. Algebra, 547 (2020), 456–493, arXiv: 1909.08946 | DOI | MR | Zbl

[26] Zhang Y., Gao X., Manchon D., Free Rota–Baxter family algebras and free (tri)dendriform family algebras, arXiv: 2002.04448 | MR