Mots-clés : solvable Lie algebra, dilation, foliation.
@article{SIGMA_2020_16_a64,
author = {Katarzyna Grabowska and Janusz Grabowski},
title = {Solvable {Lie} {Algebras} of {Vector} {Fields} and a {Lie's} {Conjecture}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a64/}
}
TY - JOUR AU - Katarzyna Grabowska AU - Janusz Grabowski TI - Solvable Lie Algebras of Vector Fields and a Lie's Conjecture JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a64/ LA - en ID - SIGMA_2020_16_a64 ER -
Katarzyna Grabowska; Janusz Grabowski. Solvable Lie Algebras of Vector Fields and a Lie's Conjecture. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a64/
[1] Blattner R. J., “Induced and produced representations of Lie algebras”, Trans. Amer. Math. Soc., 144 (1969), 457–474 | DOI | MR
[2] Bruce A. J., Grabowska K., Grabowski J., “Linear duals of graded bundles and higher analogues of (Lie) algebroids”, J. Geom. Phys., 101 (2016), 71–99, arXiv: 1409.0439 | DOI | MR | Zbl
[3] Cariñena J. F., Falceto F., Grabowski J., “Solvability of a Lie algebra of vector fields implies their integrability by quadratures”, J. Phys. A: Math. Theor., 49 (2016), 425202, 13 pp., arXiv: 1606.02472 | DOI | MR | Zbl
[4] Cariñena J. F., Falceto F., Grabowski J., Rañada M. F., “Geometry of Lie integrability by quadratures”, J. Phys. A: Math. Theor., 48 (2015), 215206, 18 pp., arXiv: 1409.7549 | DOI | MR | Zbl
[5] Cartan E., Sur la structure des groupes de transformations finis et continus, Thesis (Paris, Nony 1894), 2nd ed., Vuibert, Paris, 1933
[6] Draisma J., Lie algebras of vector fields, Ph.D. Thesis, Technische Universiteit Eindhoven, 2002 | DOI | MR | Zbl
[7] Draisma J., “On a conjecture of Sophus Lie”, Differential Equations and the Stokes Phenomenon, World Sci. Publ., River Edge, NJ, 2002, 65–87 | DOI | MR | Zbl
[8] Draisma J., “Transitive Lie algebras of vector fields: an overview”, Qual. Theory Dyn. Syst., 11 (2012), 39–60, arXiv: 1107.2836 | DOI | MR | Zbl
[9] Gantmacher F., “On the classification of real simple Lie groups”, Rec. Math., 5 (1939), 217–250 | MR | Zbl
[10] González-López A., Kamran N., Olver P. J., “Lie algebras of vector fields in the real plane”, Proc. London Math. Soc., 64 (1992), 339–368 | DOI | MR | Zbl
[11] Grabowski J., “Remarks on nilpotent Lie algebras of vector fields”, J. Reine Angew. Math., 406 (1990), 1–4 | DOI | MR | Zbl
[12] Grabowski J., Rotkiewicz M., “Higher vector bundles and multi-graded symplectic manifolds”, J. Geom. Phys., 59 (2009), 1285–1305, arXiv: math.DG/0702772 | DOI | MR | Zbl
[13] Grabowski J., Rotkiewicz M., “Graded bundles and homogeneity structures”, J. Geom. Phys., 62 (2012), 21–36, arXiv: 1102.0180 | DOI | MR | Zbl
[14] Guillemin V. W., Sternberg S., “An algebraic model of transitive differential geometry”, Bull. Amer. Math. Soc., 70 (1964), 16–47 | DOI | MR | Zbl
[15] Kawski M., “Nilpotent Lie algebras of vectorfields”, J. Reine Angew. Math., 388 (1988), 1–17 | DOI | MR | Zbl
[16] Lie S., “Theorie der Transformationsgruppen I”, Math. Ann., 16 (1880), 441–528 | DOI | MR
[17] Lie S., Gesammelte Abhandlungen, v. 5, Gruppenregister, B.G. Teubner, Leipzig, 1924 | MR
[18] Lie S., Engel F., Transformationsgruppen, B.G. Teubner, Leipzig, 1893 | Zbl
[19] Magazev A. A., Mikheyev V. V., Shirokov I. V., “Computation of composition functions and invariant vector fields in terms of structure constants of associated Lie algebras”, SIGMA, 11 (2015), 066, 17 pp., arXiv: 1312.0362 | DOI | MR | Zbl
[20] Mubarakzjanov G. M., “Classification of solvable Lie algebras of sixth order with a non-nilpotent basis element”, Izv. Vyssh. Uchebn. Zaved. Mat., 1963, no. 4(35), 104–116 | MR
[21] Nagano T., “Linear differential systems with singularities and an application to transitive Lie algebras”, J. Math. Soc. Japan, 18 (1966), 398–404 | DOI | MR | Zbl
[22] Palais R. S., A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., 22, 1957, iii+123 pp. | DOI | MR | Zbl
[23] Popovych R. O., Boyko V. M., Nesterenko M. O., Lutfullin M. W., “Realizations of real low-dimensional Lie algebras”, J. Phys. A: Math. Gen., 36 (2003), 7337–7360, arXiv: math-ph/0301029 | DOI | MR | Zbl
[24] Safiullina E. N., Classification of nilpotent Lie algebras of order $7$, Ph.D. Thesis, Kazan University, Kazan, 1964 | MR
[25] Schneider E., “Projectable Lie algebras of vector fields in 3D”, J. Geom. Phys., 132 (2018), 222–229, arXiv: 1803.08878 | DOI | MR | Zbl
[26] Tsagas G., “Classification of nilpotent Lie algebras of dimension eight”, J. Inst. Math. Comput. Sci. Math. Ser., 12 (1999), 179–183 | MR | Zbl
[27] Turkowski P., “Solvable Lie algebras of dimension six”, J. Math. Phys., 31 (1990), 1344–1350 | DOI | MR | Zbl
[28] Voronov Th.Th., “$Q$-manifolds and higher analogs of Lie algebroids”, XXIX Workshop on Geometric Methods in Physics, AIP Conf. Proc., 1307, Amer. Inst. Phys., Melville, NY, 2010, 191–202, arXiv: 1010.2503 | DOI | MR | Zbl
[29] Šnobl L., Winternitz P., Classification and identification of Lie algebras, CRM Monograph Series, 33, Amer. Math. Soc., Providence, RI, 2014 | MR