Solvable Lie Algebras of Vector Fields and a Lie's Conjecture
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a local and constructive differential geometric description of finite-dimensional solvable and transitive Lie algebras of vector fields. We show that it implies a Lie's conjecture for such Lie algebras. Also infinite-dimensional analytical solvable and transitive Lie algebras of vector fields whose derivative ideal is nilpotent can be adapted to this scheme.
Keywords: vector field, nilpotent Lie algebra
Mots-clés : solvable Lie algebra, dilation, foliation.
@article{SIGMA_2020_16_a64,
     author = {Katarzyna Grabowska and Janusz Grabowski},
     title = {Solvable {Lie} {Algebras} of {Vector} {Fields} and a {Lie's} {Conjecture}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a64/}
}
TY  - JOUR
AU  - Katarzyna Grabowska
AU  - Janusz Grabowski
TI  - Solvable Lie Algebras of Vector Fields and a Lie's Conjecture
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a64/
LA  - en
ID  - SIGMA_2020_16_a64
ER  - 
%0 Journal Article
%A Katarzyna Grabowska
%A Janusz Grabowski
%T Solvable Lie Algebras of Vector Fields and a Lie's Conjecture
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a64/
%G en
%F SIGMA_2020_16_a64
Katarzyna Grabowska; Janusz Grabowski. Solvable Lie Algebras of Vector Fields and a Lie's Conjecture. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a64/

[1] Blattner R. J., “Induced and produced representations of Lie algebras”, Trans. Amer. Math. Soc., 144 (1969), 457–474 | DOI | MR

[2] Bruce A. J., Grabowska K., Grabowski J., “Linear duals of graded bundles and higher analogues of (Lie) algebroids”, J. Geom. Phys., 101 (2016), 71–99, arXiv: 1409.0439 | DOI | MR | Zbl

[3] Cariñena J. F., Falceto F., Grabowski J., “Solvability of a Lie algebra of vector fields implies their integrability by quadratures”, J. Phys. A: Math. Theor., 49 (2016), 425202, 13 pp., arXiv: 1606.02472 | DOI | MR | Zbl

[4] Cariñena J. F., Falceto F., Grabowski J., Rañada M. F., “Geometry of Lie integrability by quadratures”, J. Phys. A: Math. Theor., 48 (2015), 215206, 18 pp., arXiv: 1409.7549 | DOI | MR | Zbl

[5] Cartan E., Sur la structure des groupes de transformations finis et continus, Thesis (Paris, Nony 1894), 2nd ed., Vuibert, Paris, 1933

[6] Draisma J., Lie algebras of vector fields, Ph.D. Thesis, Technische Universiteit Eindhoven, 2002 | DOI | MR | Zbl

[7] Draisma J., “On a conjecture of Sophus Lie”, Differential Equations and the Stokes Phenomenon, World Sci. Publ., River Edge, NJ, 2002, 65–87 | DOI | MR | Zbl

[8] Draisma J., “Transitive Lie algebras of vector fields: an overview”, Qual. Theory Dyn. Syst., 11 (2012), 39–60, arXiv: 1107.2836 | DOI | MR | Zbl

[9] Gantmacher F., “On the classification of real simple Lie groups”, Rec. Math., 5 (1939), 217–250 | MR | Zbl

[10] González-López A., Kamran N., Olver P. J., “Lie algebras of vector fields in the real plane”, Proc. London Math. Soc., 64 (1992), 339–368 | DOI | MR | Zbl

[11] Grabowski J., “Remarks on nilpotent Lie algebras of vector fields”, J. Reine Angew. Math., 406 (1990), 1–4 | DOI | MR | Zbl

[12] Grabowski J., Rotkiewicz M., “Higher vector bundles and multi-graded symplectic manifolds”, J. Geom. Phys., 59 (2009), 1285–1305, arXiv: math.DG/0702772 | DOI | MR | Zbl

[13] Grabowski J., Rotkiewicz M., “Graded bundles and homogeneity structures”, J. Geom. Phys., 62 (2012), 21–36, arXiv: 1102.0180 | DOI | MR | Zbl

[14] Guillemin V. W., Sternberg S., “An algebraic model of transitive differential geometry”, Bull. Amer. Math. Soc., 70 (1964), 16–47 | DOI | MR | Zbl

[15] Kawski M., “Nilpotent Lie algebras of vectorfields”, J. Reine Angew. Math., 388 (1988), 1–17 | DOI | MR | Zbl

[16] Lie S., “Theorie der Transformationsgruppen I”, Math. Ann., 16 (1880), 441–528 | DOI | MR

[17] Lie S., Gesammelte Abhandlungen, v. 5, Gruppenregister, B.G. Teubner, Leipzig, 1924 | MR

[18] Lie S., Engel F., Transformationsgruppen, B.G. Teubner, Leipzig, 1893 | Zbl

[19] Magazev A. A., Mikheyev V. V., Shirokov I. V., “Computation of composition functions and invariant vector fields in terms of structure constants of associated Lie algebras”, SIGMA, 11 (2015), 066, 17 pp., arXiv: 1312.0362 | DOI | MR | Zbl

[20] Mubarakzjanov G. M., “Classification of solvable Lie algebras of sixth order with a non-nilpotent basis element”, Izv. Vyssh. Uchebn. Zaved. Mat., 1963, no. 4(35), 104–116 | MR

[21] Nagano T., “Linear differential systems with singularities and an application to transitive Lie algebras”, J. Math. Soc. Japan, 18 (1966), 398–404 | DOI | MR | Zbl

[22] Palais R. S., A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., 22, 1957, iii+123 pp. | DOI | MR | Zbl

[23] Popovych R. O., Boyko V. M., Nesterenko M. O., Lutfullin M. W., “Realizations of real low-dimensional Lie algebras”, J. Phys. A: Math. Gen., 36 (2003), 7337–7360, arXiv: math-ph/0301029 | DOI | MR | Zbl

[24] Safiullina E. N., Classification of nilpotent Lie algebras of order $7$, Ph.D. Thesis, Kazan University, Kazan, 1964 | MR

[25] Schneider E., “Projectable Lie algebras of vector fields in 3D”, J. Geom. Phys., 132 (2018), 222–229, arXiv: 1803.08878 | DOI | MR | Zbl

[26] Tsagas G., “Classification of nilpotent Lie algebras of dimension eight”, J. Inst. Math. Comput. Sci. Math. Ser., 12 (1999), 179–183 | MR | Zbl

[27] Turkowski P., “Solvable Lie algebras of dimension six”, J. Math. Phys., 31 (1990), 1344–1350 | DOI | MR | Zbl

[28] Voronov Th.Th., “$Q$-manifolds and higher analogs of Lie algebroids”, XXIX Workshop on Geometric Methods in Physics, AIP Conf. Proc., 1307, Amer. Inst. Phys., Melville, NY, 2010, 191–202, arXiv: 1010.2503 | DOI | MR | Zbl

[29] Šnobl L., Winternitz P., Classification and identification of Lie algebras, CRM Monograph Series, 33, Amer. Math. Soc., Providence, RI, 2014 | MR