The Bochner Technique and Weighted Curvatures
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this note we study the Bochner formula on smooth metric measure spaces. We introduce weighted curvature conditions that imply vanishing of all Betti numbers.
Keywords: smooth metric measure spaces, Hodge theory.
Mots-clés : Bochner technique
@article{SIGMA_2020_16_a63,
     author = {Peter Petersen and Matthias Wink},
     title = {The {Bochner} {Technique} and {Weighted} {Curvatures}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a63/}
}
TY  - JOUR
AU  - Peter Petersen
AU  - Matthias Wink
TI  - The Bochner Technique and Weighted Curvatures
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a63/
LA  - en
ID  - SIGMA_2020_16_a63
ER  - 
%0 Journal Article
%A Peter Petersen
%A Matthias Wink
%T The Bochner Technique and Weighted Curvatures
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a63/
%G en
%F SIGMA_2020_16_a63
Peter Petersen; Matthias Wink. The Bochner Technique and Weighted Curvatures. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a63/

[1] Bakry D., Émery M., “Diffusions hypercontractives”, Séminaire de probabilités, XIX (1983/84), Lecture Notes in Math., 1123, Springer, Berlin, 1985, 177–206 | DOI | MR

[2] Bakry D., Qian Z., “Volume comparison theorems without Jacobi fields”, Current Trends in Potential Theory, Theta Ser. Adv. Math., 4, Theta, Bucharest, 2005, 115–122 | MR | Zbl

[3] Lichnerowicz A., “Variétés riemanniennes à tenseur C non négatif”, C. R. Acad. Sci. Paris Sér. A-B, 271 (1970), A650–A653 | MR

[4] Lott J., “Some geometric properties of the Bakry–Émery–Ricci tensor”, Comment. Math. Helv., 78 (2003), 865–883, arXiv: math.DG/0211065 | DOI | MR | Zbl

[5] Petersen P., Riemannian geometry, Graduate Texts in Mathematics, 171, 3rd ed., Springer, Cham, 2016 | DOI | MR | Zbl

[6] Petersen P., Wink M., New curvature conditions for the Bochner technique, arXiv: 1908.09958v3 | MR

[7] Qian Z., “Estimates for weighted volumes and applications”, Quart. J. Math. Oxford, 48 (1997), 235–242 | DOI | MR | Zbl

[8] Wei G., Wylie W., “Comparison geometry for the Bakry–Émery Ricci tensor”, J. Differential Geom., 83 (2009), 377–405, arXiv: 0706.1120 | DOI | MR | Zbl