Mots-clés : Bochner technique
@article{SIGMA_2020_16_a63,
author = {Peter Petersen and Matthias Wink},
title = {The {Bochner} {Technique} and {Weighted} {Curvatures}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a63/}
}
Peter Petersen; Matthias Wink. The Bochner Technique and Weighted Curvatures. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a63/
[1] Bakry D., Émery M., “Diffusions hypercontractives”, Séminaire de probabilités, XIX (1983/84), Lecture Notes in Math., 1123, Springer, Berlin, 1985, 177–206 | DOI | MR
[2] Bakry D., Qian Z., “Volume comparison theorems without Jacobi fields”, Current Trends in Potential Theory, Theta Ser. Adv. Math., 4, Theta, Bucharest, 2005, 115–122 | MR | Zbl
[3] Lichnerowicz A., “Variétés riemanniennes à tenseur C non négatif”, C. R. Acad. Sci. Paris Sér. A-B, 271 (1970), A650–A653 | MR
[4] Lott J., “Some geometric properties of the Bakry–Émery–Ricci tensor”, Comment. Math. Helv., 78 (2003), 865–883, arXiv: math.DG/0211065 | DOI | MR | Zbl
[5] Petersen P., Riemannian geometry, Graduate Texts in Mathematics, 171, 3rd ed., Springer, Cham, 2016 | DOI | MR | Zbl
[6] Petersen P., Wink M., New curvature conditions for the Bochner technique, arXiv: 1908.09958v3 | MR
[7] Qian Z., “Estimates for weighted volumes and applications”, Quart. J. Math. Oxford, 48 (1997), 235–242 | DOI | MR | Zbl
[8] Wei G., Wylie W., “Comparison geometry for the Bakry–Émery Ricci tensor”, J. Differential Geom., 83 (2009), 377–405, arXiv: 0706.1120 | DOI | MR | Zbl