The Elliptic Painlevé Lax Equation vs. van Diejen's $8$-Coupling Elliptic Hamiltonian
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $8$-parameter elliptic Sakai difference Painlevé equation admits a Lax formulation. We show that a suitable specialization of the Lax equation gives rise to the time-independent Schrödinger equation for the $BC_1$ $8$-parameter ‘relativistic’ Calogero–Moser Hamiltonian due to van Diejen. This amounts to a generalization of previous results concerning the Painlevé–Calogero correspondence to the highest level in the two hierarchies.
Keywords: Ruijsenaars–van Diejen Hamiltonian.
Mots-clés : Painlevé–Calogero correspondence, elliptic difference Painlevé equation
@article{SIGMA_2020_16_a62,
     author = {Masatoshi Noumi and Simon Ruijsenaars and Yasuhiko Yamada},
     title = {The {Elliptic} {Painlev\'e} {Lax} {Equation} vs. van {Diejen's} $8${-Coupling} {Elliptic} {Hamiltonian}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a62/}
}
TY  - JOUR
AU  - Masatoshi Noumi
AU  - Simon Ruijsenaars
AU  - Yasuhiko Yamada
TI  - The Elliptic Painlevé Lax Equation vs. van Diejen's $8$-Coupling Elliptic Hamiltonian
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a62/
LA  - en
ID  - SIGMA_2020_16_a62
ER  - 
%0 Journal Article
%A Masatoshi Noumi
%A Simon Ruijsenaars
%A Yasuhiko Yamada
%T The Elliptic Painlevé Lax Equation vs. van Diejen's $8$-Coupling Elliptic Hamiltonian
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a62/
%G en
%F SIGMA_2020_16_a62
Masatoshi Noumi; Simon Ruijsenaars; Yasuhiko Yamada. The Elliptic Painlevé Lax Equation vs. van Diejen's $8$-Coupling Elliptic Hamiltonian. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a62/

[1] Bertola M., Cafasso M., Rubtsov V., “Noncommutative Painlevé equations and systems of Calogero type”, Comm. Math. Phys., 363 (2018), 503–530, arXiv: 1710.00736 | DOI | MR | Zbl

[2] Jimbo M., Sakai H., “A $q$-analog of the sixth Painlevé equation”, Lett. Math. Phys., 38 (1996), 145–154, arXiv: chao-dyn/9507010 | DOI | MR | Zbl

[3] Kajiwara K., Noumi M., Yamada Y., “Geometric aspects of Painlevé equations”, J. Phys. A: Math. Theor., 50 (2017), 073001, 164 pp., arXiv: 1509.08186 | DOI | MR | Zbl

[4] Komori Y., Noumi M., Shiraishi J., “Kernel functions for difference operators of Ruijsenaars type and their applications”, SIGMA, 5 (2009), 054, 40 pp., arXiv: 0812.0279 | DOI | MR | Zbl

[5] Noumi M., Tsujimoto S., Yamada Y., “Padé interpolation for elliptic Painlevé equation”, Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., 40, Springer, Heidelberg, 2013, 463–482, arXiv: 1204.0294 | DOI | MR | Zbl

[6] Rains E., Ruijsenaars S., “Difference operators of Sklyanin and van Diejen type”, Comm. Math. Phys., 320 (2013), 851–889, arXiv: 1203.0042 | DOI | MR | Zbl

[7] Rains E. M., “An isomonodromy interpretation of the hypergeometric solution of the elliptic Painlevé equation (and generalizations)”, SIGMA, 7 (2011), 088, 24 pp., arXiv: 0807.0258 | DOI | MR | Zbl

[8] Ruijsenaars S. N. M., “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 | DOI | MR | Zbl

[9] Ruijsenaars S. N. M., “Hilbert–Schmidt operators vs. integrable systems of elliptic Calogero–Moser type IV The relativistic Heun (van Diejen) case”, SIGMA, 11 (2015), 004, 78 pp., arXiv: 1404.4392 | DOI | MR | Zbl

[10] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl

[11] Takasaki K., “Painlevé–Calogero correspondence revisited”, J. Math. Phys., 42 (2001), 1443–1473 | DOI | MR | Zbl

[12] Takemura K., “Heun equation and Painlevé equation”, Proceedings of the Kyoto 2004 Workshop “Elliptic Integrable Systems”, Rokko Lectures in Math., 18, eds. M. Noumi, K. Takasaki, Kobe University, 2005, 305–322, arXiv: math.CA/0503288

[13] Takemura K., “Degenerations of Ruijsenaars–van Diejen operator and $q$-Painlevé equations”, J. Integrable Syst., 2 (2017), xyx008, 27 pp., arXiv: 1608.07265 | DOI | MR | Zbl

[14] van Diejen J. F., “Integrability of difference Calogero–Moser systems”, J. Math. Phys., 35 (1994), 2983–3004 | DOI | MR | Zbl

[15] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl

[16] Yamada Y., “A Lax formalism for the elliptic difference Painlevé equation”, SIGMA, 5 (2009), 042, 15 pp., arXiv: 0811.1796 | DOI | MR | Zbl

[17] Yamada Y., “Lax formalism for $q$-Painlevé equations with affine Weyl group symmetry of type $E^{(1)}_n$”, Int. Math. Res. Not., 2011 (2011), 3823–3838, arXiv: 1004.1687 | DOI | MR | Zbl

[18] Yamada Y., “An elliptic Garnier system from interpolation”, SIGMA, 13 (2017), 069, 8 pp., arXiv: 1706.05155 | DOI | MR | Zbl

[19] Zabrodin A., Zotov A., “Quantum Painlevé–Calogero correspondence for Painlevé VI”, J. Math. Phys., 53 (2012), 073508, 19 pp., arXiv: 1107.5672 | DOI | MR | Zbl