Mots-clés : stratifications
@article{SIGMA_2020_16_a61,
author = {Mikhail Kapranov and Vadim Schechtman},
title = {Contingency {Tables} with {Variable} {Margins} (with an {Appendix} by {Pavel} {Etingof)}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a61/}
}
TY - JOUR AU - Mikhail Kapranov AU - Vadim Schechtman TI - Contingency Tables with Variable Margins (with an Appendix by Pavel Etingof) JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a61/ LA - en ID - SIGMA_2020_16_a61 ER -
Mikhail Kapranov; Vadim Schechtman. Contingency Tables with Variable Margins (with an Appendix by Pavel Etingof). Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a61/
[1] Bezrukavnikov R., Finkelberg M., Schechtman V., Factorizable sheaves and quantum groups, Lecture Notes in Math., 1691, Springer-Verlag, Berlin, 1998 | DOI | MR | Zbl
[2] Bourbaki N., Lie groups and Lie algebras, Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002 | MR | Zbl
[3] Diaconis P., Gangolli A., “Rectangular arrays with fixed margins”, Discrete Probability and Algorithms (Minneapolis, MN, 1993), IMA Vol. Math. Appl., 72, Springer, New York, 1995, 15–41 | DOI | MR | Zbl
[4] Dyckerhoff T., Kapranov M., Higher Segal spaces, Lecture Notes in Math., 2244, Springer, Cham, 2019 | DOI | MR | Zbl
[5] Ellenberg J. S., Tran T. T., Westerland C., Fox–Neuwirth–Fuks cells, quantum shuffle algebras and Malle's conjecture for functional fields, arXiv: 1701.04541
[6] Fox R., Neuwirth L., “The braid groups”, Math. Scand., 10 (1962), 119–126 | DOI | MR | Zbl
[7] Fuchs D. B., “Cohomology of the braid group ${\rm mod}\ 2$”, Funct. Anal. Appl., 4 (1970), 143–151 | DOI | MR
[8] Gabriel P., Zisman M., Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 35, Springer-Verlag, New York, 1967 | DOI | MR | Zbl
[9] Gantmacher F. R., The theory of matrices, AMS Chelsea Publishing, Providence, RI, 1998 | MR
[10] Gelfand S. I., Manin Yu.I., Methods of Homological Algebra, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl
[11] Hersh P., “Regular cell complexes in total positivity”, Invent. Math., 197 (2014), 57–114, arXiv: 0711.1348 | DOI | MR | Zbl
[12] Kapranov M., Schechtman V., Shuffle algebras and perverse sheaves, arXiv: 1904.09325
[13] Kapranov M., Schechtman V., “Perverse sheaves over real hyperplane arrangements”, Ann. of Math., 183 (2016), 619–679, arXiv: 1403.5800 | DOI | MR | Zbl
[14] Loewner C., “On totally positive matrices”, Math. Z., 63 (1955), 338–340 | DOI | MR | Zbl
[15] Lusztig G., “A survey of total positivity”, Milan J. Math., 76 (2008), 125–134, arXiv: 0705.3842 | DOI | MR | Zbl
[16] Pearson K., On the theory of contingency and its relation to association and normal correlation, Draper's Research Memoirs, Biometric Series, London, 1904 | Zbl
[17] Petersen T. K., “A two-sided analogue of the Coxeter complex”, Electron. J. Combin., 25 (2018), 4.64, 28 pp., arXiv: 1607.00086 | DOI | MR | Zbl
[18] Stanley R. P., Enumerative combinatorics, v. 1, Cambridge Studies in Advanced Mathematics, 49, 2nd ed., Cambridge University Press, Cambridge, 2011 | DOI | MR
[19] Ziegler G. M., Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1995 | DOI | MR | Zbl