Some Consequences of Categorification
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several conjectures on acyclic skew-symmetrizable cluster algebras are proven as direct consequences of their categorification via valued quivers. These include conjectures of Fomin–Zelevinsky, Reading–Speyer, and Reading–Stella related to $\mathbf{d}$-vectors, $\mathbf{g}$-vectors, and $F$-polynomials.
Keywords: acyclc cluster algebras, categorification, valued quivers.
@article{SIGMA_2020_16_a6,
     author = {Dylan Rupel and Salvatore Stella},
     title = {Some {Consequences} of {Categorification}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a6/}
}
TY  - JOUR
AU  - Dylan Rupel
AU  - Salvatore Stella
TI  - Some Consequences of Categorification
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a6/
LA  - en
ID  - SIGMA_2020_16_a6
ER  - 
%0 Journal Article
%A Dylan Rupel
%A Salvatore Stella
%T Some Consequences of Categorification
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a6/
%G en
%F SIGMA_2020_16_a6
Dylan Rupel; Salvatore Stella. Some Consequences of Categorification. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a6/

[1] Berenstein A., Zelevinsky A., “Quantum cluster algebras”, Adv. Math., 195 (2005), 405–455, arXiv: math.QA/0404446 | DOI | MR | Zbl

[2] Buan A. B., Marsh R., Reineke M., Reiten I., Todorov G., “Tilting theory and cluster combinatorics”, Adv. Math., 204 (2006), 572–618, arXiv: math.RT/0402054 | DOI | MR | Zbl

[3] Caldero P., Chapoton F., “Cluster algebras as {H}all algebras of quiver representations”, Comment. Math. Helv., 81 (2006), 595–616, arXiv: math.RT/0410187 | DOI | MR | Zbl

[4] Caldero P., Chapoton F., Schiffler R., “Quivers with relations arising from clusters ($A_n$ case)”, Trans. Amer. Math. Soc., 358 (2006), 1347–1364, arXiv: math.RT/0401316 | DOI | MR | Zbl

[5] Caldero P., Keller B., “From triangulated categories to cluster algebras. II”, Ann. Sci. École Norm. Sup. (4), 39 (2006), 983–1009, arXiv: math.RT/0510251 | DOI | MR | Zbl

[6] Caldero P., Keller B., “From triangulated categories to cluster algebras”, Invent. Math., 172 (2008), 169–211, arXiv: math.RT/0506018 | DOI | MR | Zbl

[7] Demonet L., Mutations of group species with potentials and their representations. Applications to cluster algebras, arXiv: 1003.5078

[8] Demonet L., “Categorification of skew-symmetrizable cluster algebras”, Algebr. Represent. Theory, 14 (2011), 1087–1162, arXiv: 0909.1633 | DOI | MR | Zbl

[9] Derksen H., Weyman J., Zelevinsky A., “Quivers with potentials and their representations. I Mutations”, Selecta Math. (N.S.), 14 (2008), 59–119, arXiv: 0704.0649 | DOI | MR | Zbl

[10] Dlab V., Ringel C. M., Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc., 6, 1976, v+57 pp. | DOI | MR

[11] Fomin S., Zelevinsky A., “Cluster algebras: notes for the CDM-03 conference”, Current Developments in Mathematics, Int. Press, Somerville, MA, 2003, 1–34, arXiv: math.RT/0311493 | DOI | MR | Zbl

[12] Fomin S., Zelevinsky A., “Cluster algebras. IV Coefficients”, Compos. Math., 143 (2007), 112–164, arXiv: math.RA/0602259 | DOI | MR | Zbl

[13] Geiss C., Leclerc B., Schröer J., “Semicanonical bases and preprojective algebras”, Ann. Sci. École Norm. Sup. (4), 38 (2005), 193–253, arXiv: math.RT/0402448 | DOI | MR | Zbl

[14] Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, 167, Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl

[15] Happel D., Rickard J., Schofield A., “Piecewise hereditary algebras”, Bull. London Math. Soc., 20 (1988), 23–28 | DOI | MR | Zbl

[16] Happel D., Ringel C. M., “Tilted algebras”, Trans. Amer. Math. Soc., 274 (1982), 399–443 | DOI | MR | Zbl

[17] Hohlweg C., Pilaud V., Stella S., “Polytopal realizations of finite type $g$-vector fans”, Adv. Math., 328 (2018), 713–749, arXiv: 1703.09551 | DOI | MR | Zbl

[18] Iyama O., Yoshino Y., “Mutation in triangulated categories and rigid Cohen–Macaulay modules”, Invent. Math., 172 (2008), 117–168, arXiv: math.RT/0607736 | DOI | MR | Zbl

[19] Keller B., “Cluster algebras, quiver representations and triangulated categories”, Triangulated Categories, London Math. Soc. Lecture Note Ser., 375, Cambridge University Press, Cambridge, 2010, 76–160, arXiv: 0807.1960 | MR | Zbl

[20] Labardini-Fragoso D., Zelevinsky A., “Strongly primitive species with potentials I: mutations”, Bol. Soc. Mat. Mex., 22 (2016), 47–115, arXiv: 1306.3495 | DOI | MR | Zbl

[21] Marsh R., Reineke M., Zelevinsky A., “Generalized associahedra via quiver representations”, Trans. Amer. Math. Soc., 355 (2003), 4171–4186, arXiv: math.RT/0205152 | DOI | MR | Zbl

[22] Palu Y., “Cluster characters for 2-Calabi–Yau triangulated categories”, Ann. Inst. Fourier (Grenoble), 58 (2008), 2221–2248, arXiv: math.RT/0703540 | DOI | MR | Zbl

[23] Plamondon P.-G., “Cluster characters for cluster categories with infinite-dimensional morphism spaces”, Adv. Math., 227 (2011), 1–39, arXiv: 1002.4956 | DOI | MR | Zbl

[24] Qin F., “Quantum cluster variables via Serre polynomials”, J. Reine Angew. Math., 668 (2012), 149–190, arXiv: 1004.4171 | DOI | MR | Zbl

[25] Reading N., Speyer D. E., “Combinatorial frameworks for cluster algebras”, Int. Math. Res. Not., 2016 (2016), 109–173, arXiv: 1111.2652 | DOI | MR | Zbl

[26] Reading N., Stella S., “An affine almost positive roots model”, J. Comb. Algebra (to appear) , arXiv: 1707.00340

[27] Reading N., Stella S., “Initial-seed recursions and dualities for $d$-vectors”, Pacific J. Math., 293 (2018), 179–206, arXiv: 1409.4723 | DOI | MR | Zbl

[28] Rupel D., “On a quantum analog of the Caldero–Chapoton formula”, Int. Math. Res. Not., 2011 (2011), 3207–3236 | DOI | MR | Zbl

[29] Rupel D., “Quantum cluster characters for valued quivers”, Trans. Amer. Math. Soc., 367 (2015), 7061–7102, arXiv: 1109.6694 | DOI | MR | Zbl

[30] Rupel D., Stella S., Williams H., “Affine cluster monomials are generalized minors”, Compos. Math., 155 (2019), 1301–1326, arXiv: 1712.09143 | DOI | MR | Zbl