@article{SIGMA_2020_16_a57,
author = {Hanpeng Gao and Ralf Schiffler},
title = {On the {Number} of $\tau${-Tilting} {Modules} over {Nakayama} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a57/}
}
Hanpeng Gao; Ralf Schiffler. On the Number of $\tau$-Tilting Modules over Nakayama Algebras. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a57/
[1] Adachi T., “The classification of $\tau$-tilting modules over Nakayama algebras”, J. Algebra, 452 (2016), 227–262 | DOI | MR | Zbl
[2] Adachi T., Iyama O., Reiten I., “$\tau$-tilting theory”, Compos. Math., 150 (2014), 415–452, arXiv: 1210.1036 | DOI | MR | Zbl
[3] Asai S., “Semibricks”, Int. Math. Res. Not. (to appear) , arXiv: 1610.05860 | DOI | MR
[4] Assem I., Brüstle T., Schiffler R., “Cluster-tilted algebras as trivial extensions”, Bull. Lond. Math. Soc., 40 (2008), 151–162, arXiv: math.RT/0601537 | DOI | MR | Zbl
[5] Assem I., Simson D., Skowroński A., Elements of the representation theory of associative algebras, v. 1, London Mathematical Society Student Texts, 65, Techniques of representation theory, Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl
[6] Auslander M., Smalø S. O., “Almost split sequences in subcategories”, J. Algebra, 69 (1981), 426–454 | DOI | MR | Zbl
[7] Buan A. B., Marsh R., Reineke M., Reiten I., Todorov G., “Tilting theory and cluster combinatorics”, Adv. Math., 204 (2006), 572–618, arXiv: math.RT/0402054 | DOI | MR | Zbl
[8] Caldero P., Chapoton F., Schiffler R., “Quivers with relations arising from clusters ($A_n$ case)”, Trans. Amer. Math. Soc., 358 (2006), 1347–1364, arXiv: math.RT/0401316 | DOI | MR | Zbl
[9] Fomin S., Zelevinsky A., “$Y$-systems and generalized associahedra”, Ann. of Math., 158 (2003), 977–1018, arXiv: hep-th/0111053 | DOI | MR | Zbl
[10] Happel D., Ringel C. M., “Tilted algebras”, Trans. Amer. Math. Soc., 274 (1982), 399–443 | DOI | MR | Zbl
[11] Keller B., Vossieck D., “Aisles in derived categories”, Bull. Soc. Math. Belg. Sér. A, 40 (1988), 239–253 | MR | Zbl
[12] Obaid M. A.A., Nauman S. K., Fakieh W. M., Ringel C. M., “The number of support-tilting modules for a Dynkin algebra”, J. Integer Seq., 18 (2015), 15.10.6, 24 pp., arXiv: 1403.5827 | MR | Zbl
[13] Schiffler R., Quiver representations, CMS Books in Mathematics, Springer, Cham, 2014 | DOI | MR | Zbl