On the Number of $\tau$-Tilting Modules over Nakayama Algebras
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Lambda^r_n$ be the path algebra of the linearly oriented quiver of type $\mathbb{A}$ with $n$ vertices modulo the $r$-th power of the radical, and let $\widetilde{\Lambda}^r_n$ be the path algebra of the cyclically oriented quiver of type $\widetilde{\mathbb{A}}$ with $n$ vertices modulo the $r$-th power of the radical. Adachi gave a recurrence relation for the number of $\tau$-tilting modules over $\Lambda^r_n$. In this paper, we show that the same recurrence relation also holds for the number of $\tau$-tilting modules over $\widetilde{\Lambda}^r_n$. As an application, we give a new proof for a result by Asai on recurrence formulae for the number of support $\tau$-tilting modules over $\Lambda^r_n$ and $\widetilde{\Lambda}^r_n$.
Keywords: $\tau$-tilting modules, support $\tau$-tilting modules, Nakayama algebras.
@article{SIGMA_2020_16_a57,
     author = {Hanpeng Gao and Ralf Schiffler},
     title = {On the {Number} of $\tau${-Tilting} {Modules} over {Nakayama} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a57/}
}
TY  - JOUR
AU  - Hanpeng Gao
AU  - Ralf Schiffler
TI  - On the Number of $\tau$-Tilting Modules over Nakayama Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a57/
LA  - en
ID  - SIGMA_2020_16_a57
ER  - 
%0 Journal Article
%A Hanpeng Gao
%A Ralf Schiffler
%T On the Number of $\tau$-Tilting Modules over Nakayama Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a57/
%G en
%F SIGMA_2020_16_a57
Hanpeng Gao; Ralf Schiffler. On the Number of $\tau$-Tilting Modules over Nakayama Algebras. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a57/

[1] Adachi T., “The classification of $\tau$-tilting modules over Nakayama algebras”, J. Algebra, 452 (2016), 227–262 | DOI | MR | Zbl

[2] Adachi T., Iyama O., Reiten I., “$\tau$-tilting theory”, Compos. Math., 150 (2014), 415–452, arXiv: 1210.1036 | DOI | MR | Zbl

[3] Asai S., “Semibricks”, Int. Math. Res. Not. (to appear) , arXiv: 1610.05860 | DOI | MR

[4] Assem I., Brüstle T., Schiffler R., “Cluster-tilted algebras as trivial extensions”, Bull. Lond. Math. Soc., 40 (2008), 151–162, arXiv: math.RT/0601537 | DOI | MR | Zbl

[5] Assem I., Simson D., Skowroński A., Elements of the representation theory of associative algebras, v. 1, London Mathematical Society Student Texts, 65, Techniques of representation theory, Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl

[6] Auslander M., Smalø S. O., “Almost split sequences in subcategories”, J. Algebra, 69 (1981), 426–454 | DOI | MR | Zbl

[7] Buan A. B., Marsh R., Reineke M., Reiten I., Todorov G., “Tilting theory and cluster combinatorics”, Adv. Math., 204 (2006), 572–618, arXiv: math.RT/0402054 | DOI | MR | Zbl

[8] Caldero P., Chapoton F., Schiffler R., “Quivers with relations arising from clusters ($A_n$ case)”, Trans. Amer. Math. Soc., 358 (2006), 1347–1364, arXiv: math.RT/0401316 | DOI | MR | Zbl

[9] Fomin S., Zelevinsky A., “$Y$-systems and generalized associahedra”, Ann. of Math., 158 (2003), 977–1018, arXiv: hep-th/0111053 | DOI | MR | Zbl

[10] Happel D., Ringel C. M., “Tilted algebras”, Trans. Amer. Math. Soc., 274 (1982), 399–443 | DOI | MR | Zbl

[11] Keller B., Vossieck D., “Aisles in derived categories”, Bull. Soc. Math. Belg. Sér. A, 40 (1988), 239–253 | MR | Zbl

[12] Obaid M. A.A., Nauman S. K., Fakieh W. M., Ringel C. M., “The number of support-tilting modules for a Dynkin algebra”, J. Integer Seq., 18 (2015), 15.10.6, 24 pp., arXiv: 1403.5827 | MR | Zbl

[13] Schiffler R., Quiver representations, CMS Books in Mathematics, Springer, Cham, 2014 | DOI | MR | Zbl