@article{SIGMA_2020_16_a56,
author = {Alessio Fiorentino and Riccardo Salvati Manni},
title = {On {Frobenius'} {Theta} {Formula}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a56/}
}
Alessio Fiorentino; Riccardo Salvati Manni. On Frobenius' Theta Formula. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a56/
[1] Auffarth R., Pirola G. P., Manni R. S., “Torsion points on theta divisors”, Proc. Amer. Math. Soc., 145 (2017), 89–99, arXiv: 1512.09296 | DOI | MR | Zbl
[2] Beauville A., “The Coble hypersurfaces”, C. R. Math. Acad. Sci. Paris, 337 (2003), 189–194, arXiv: math.AG/0306097 | DOI | MR | Zbl
[3] Beauville A., “Abelian varieties associated to Gaussian lattices”, A Celebration of Algebraic Geometry, Clay Math. Proc., 18, Amer. Math. Soc., Providence, RI, 2013, 37–44, arXiv: 1112.2843 | MR | Zbl
[4] Buchstaber V., Krichever I., “Multidimensional vector addition theorems and the Riemann theta functions”, Int. Math. Res. Not., 1996 (1996), 505–513 | DOI | MR | Zbl
[5] Donten-Bury M., van Geemen B., Kapustka G., Kapustka M., Wiśniewski J. A., “A very special EPW sextic and two IHS fourfolds”, Geom. Topol., 21 (2017), 1179–1230, arXiv: 1509.06214 | DOI | MR | Zbl
[6] Farkas H., Grushevsky S., Salvati Mann R., An explicit solution to the weak Schottky problem, arXiv: 1710.02938
[7] Fay J., “On the Riemann–Jacobi formula”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1979, no. 5, 61–73 | MR | Zbl
[8] Frobenius G., “Ueber die constanten Factoren der Thetareihen”, J. Reine Angew. Math., 98 (1885), 244–263 | DOI | MR | Zbl
[9] Grushevsky S., “Cubic equations for the hyperelliptic locus”, Asian J. Math., 8 (2004), 161–172, arXiv: math.AG/0503026 | DOI | MR | Zbl
[10] Grushevsky S., Salvati Manni R., “Gradients of odd theta functions”, J. Reine Angew. Math., 573 (2004), 45–59, arXiv: math.AG/0310085 | DOI | MR | Zbl
[11] Gunning R. C., “Some identities for abelian integrals”, Amer. J. Math., 108 (1986), 39–74 | DOI | MR | Zbl
[12] Igusa J., Theta functions, Die Grundlehren der mathematischen Wissenschaften, 194, Springer-Verlag, New York – Heidelberg, 1972 | DOI | MR | Zbl
[13] Igusa J., “On Jacobi's derivative formula and its generalizations”, Amer. J. Math., 102 (1980), 409–446 | DOI | MR | Zbl
[14] Igusa J., “On the irreducibility of Schottky's divisor”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28 (1981), 531–545 | MR | Zbl
[15] Mumford D., Tata lectures on theta, v. II, Progress in Mathematics, 43, Jacobian theta functions and differential equations, Birkhäuser Boston, Inc., Boston, MA, 1984 | DOI | MR | Zbl
[16] Nöther M., “Zur Theorie der Thetafunctionen von vier Argumenten”, Math. Ann., 14 (1878), 248–293 | DOI | MR
[17] Poor C., “The hyperelliptic locus”, Duke Math. J., 76 (1994), 809–884 | DOI | MR | Zbl
[18] Rauch H. E., Farkas H. M., Theta functions with applications to Riemann surfaces, The Williams Wilkins Co., Baltimore, Md., 1974 | MR | Zbl
[19] Salvati Manni R., “Modular varieties with level $2$ theta structure”, Amer. J. Math., 116 (1994), 1489–1511 | DOI | MR | Zbl
[20] Thomae J., “Beitrag zur Bestimmung von $\vartheta(0,0,\dots, 0)$ durch die Klassenmoduln algebraischer Functionen”, J. Reine Angew. Math., 71 (1870), 201–222 | DOI | MR | Zbl
[21] van Geemen B., “Schottky–Jung relations and vectorbundles on hyperelliptic curves”, Math. Ann., 281 (1988), 431–449 | DOI | MR | Zbl