Mots-clés : para-CR structures, Monge invariant, Wünschmann invariant
@article{SIGMA_2020_16_a55,
author = {Jo\"el Merker and Pawe{\l} Nurowski},
title = {New {Explicit} {Lorentzian} {Einstein{\textendash}Weyl} {Structures} in {3-Dimensions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a55/}
}
Joël Merker; Paweł Nurowski. New Explicit Lorentzian Einstein–Weyl Structures in 3-Dimensions. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a55/
[1] Calderbank D. M.J., Pedersen H., “Einstein–Weyl geometry”, Surveys in Differential Geometry: Essays on Einstein Manifolds, Surv. Differ. Geom., 6, Int. Press, Boston, MA, 1999, 387–423 | DOI | MR | Zbl
[2] Cartan E., “La geometria de las ecuaciones diferenciales de tercer orden”, Rev. Mat. Hispano-Amer., 4 (1941), 1–31
[3] Cartan E., “Sur une classe d'espaces de Weyl”, Ann. Sci. École Norm. Sup., 60 (1943), 1–16 | DOI | MR | Zbl
[4] Dunajski M., Mason L. J., Tod P., “Einstein–Weyl geometry, the dKP equation and twistor theory”, J. Geom. Phys., 37 (2001), 63–93, arXiv: math.DG/0004031 | DOI | MR | Zbl
[5] Eastwood M. G., Tod K. P., “Local constraints on Einstein–Weyl geometries: the 3-dimensional case”, Ann. Global Anal. Geom., 18 (2000), 1–27 | DOI | MR | Zbl
[6] Frittelli S., Kozameh C., Newman E. T., “Differential geometry from differential equations”, Comm. Math. Phys., 223 (2001), 383–408, arXiv: gr-qc/0012058 | DOI | MR | Zbl
[7] Godlinski M., Geometry of third-order ordinary differential equations and its applications in general relativity, arXiv: 0810.2234
[8] Godlinski M., Nurowski P., Geometry of third order ODEs, arXiv: 0902.4129
[9] Hill C. D., Nurowski P., “Differential equations and para-CR structures”, Boll. Unione Mat. Ital., 3 (2010), 25–91, arXiv: 0909.2458 | MR | Zbl
[10] Hitchin N. J., “Complex manifolds and Einstein's equations”, Twistor Geometry and Nonlinear Systems (Primorsko, 1980), Lecture Notes in Math., 970, Springer, Berlin – New York, 1982, 73–99 | DOI | MR
[11] Jones P. E., Tod K. P., “Minitwistor spaces and Einstein–Weyl spaces”, Classical Quantum Gravity, 2 (1985), 565–577 | DOI | MR | Zbl
[12] LeBrun C., Mason L. J., “The Einstein–Weyl equations, scattering maps, and holomorphic disks”, Math. Res. Lett., 16 (2009), 291–301, arXiv: 0806.3761 | DOI | MR | Zbl
[13] Merker J., “Lie symmetries and CR geometry”, J. Math. Sci., 154 (2008), 817–922, arXiv: math.CV/0703130 | DOI | MR | Zbl
[14] Merker J., Nurowski P., On degenerate para-CR structures: Cartan reduction and homogeneous models, arXiv: 2003.08166
[15] Merker J., Pocchiola S., “Explicit absolute parallelism for 2-nondegenerate real hypersurfaces $M^5 \subset {\mathbb C}^3$ of constant Levi rank 1”, J. Geom. Anal., 30 (2020), 2689–2730 | DOI | MR | Zbl
[16] Monge G., “Sur les équations différentielles des courbes du second degré”, Corr. l'École Impériale Polytech., 1810, no. 2, 51–54
[17] Nurowski P., “Differential equations and conformal structures”, J. Geom. Phys., 55 (2005), 19–49, arXiv: math.DG/0406400 | DOI | MR | Zbl
[18] Pedersen H., Tod K. P., “Three-dimensional Einstein–Weyl geometry”, Adv. Math., 97 (1993), 74–109 | DOI | MR | Zbl
[19] Tod K. P., “Compact $3$-dimensional Einstein–Weyl structures”, J. London Math. Soc., 45 (1992), 341–351 | DOI | MR | Zbl
[20] Tod K. P., “Einstein–Weyl spaces and third-order differential equations”, J. Math. Phys., 41 (2000), 5572–5581 | DOI | MR | Zbl
[21] Weyl H., Raum, Zeit, Materie, Springer-Verlag, Berlin, 1919 | DOI | MR | Zbl
[22] Wünschmann K., Uber Berührungsbedingungen bei Integralkurven von Differentialgleichungen, Inaug. Dissert., Teubner, Leipzig, 1905 | Zbl