@article{SIGMA_2020_16_a54,
author = {Kwokwai Chan and Cheol-Hyun Cho and Siu-Cheong Lau and Naichung Conan Leung and Hsian-Hua Tseng},
title = {A {Note} on {Disk} {Counting} in {Toric} {Orbifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a54/}
}
TY - JOUR AU - Kwokwai Chan AU - Cheol-Hyun Cho AU - Siu-Cheong Lau AU - Naichung Conan Leung AU - Hsian-Hua Tseng TI - A Note on Disk Counting in Toric Orbifolds JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a54/ LA - en ID - SIGMA_2020_16_a54 ER -
%0 Journal Article %A Kwokwai Chan %A Cheol-Hyun Cho %A Siu-Cheong Lau %A Naichung Conan Leung %A Hsian-Hua Tseng %T A Note on Disk Counting in Toric Orbifolds %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a54/ %G en %F SIGMA_2020_16_a54
Kwokwai Chan; Cheol-Hyun Cho; Siu-Cheong Lau; Naichung Conan Leung; Hsian-Hua Tseng. A Note on Disk Counting in Toric Orbifolds. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a54/
[1] Auroux D., “Mirror symmetry and $T$-duality in the complement of an anticanonical divisor”, J. Gökova Geom. Topol., 1 (2007), 51–91, arXiv: 0706.3207 | MR | Zbl
[2] Borisov L. A., Chen L., Smith G. G., “The orbifold Chow ring of toric Deligne–Mumford stacks”, J. Amer. Math. Soc., 18 (2005), 193–215, arXiv: math.AG/0309229 | DOI | MR | Zbl
[3] Chan K., Cho C.-H., Lau S.-C., Tseng H.-H., “Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds”, Comm. Math. Phys., 328 (2014), 83–130, arXiv: 1208.5282 | DOI | MR | Zbl
[4] Chan K., Cho C.-H., Lau S.-C., Tseng H.-H., “Gross fibrations, SYZ mirror symmetry, and open Gromov–Witten invariants for toric Calabi–Yau orbifolds”, J. Differential Geom., 103 (2016), 207–288, arXiv: 1306.0437 | DOI | MR | Zbl
[5] Chan K., Lau S.-C., Leung N. C., Tseng H.-H., “Open Gromov–Witten invariants, mirror maps, and Seidel representations for toric manifolds”, Duke Math. J., 166 (2017), 1405–1462, arXiv: 1209.6119 | DOI | MR | Zbl
[6] Chen W., Ruan Y., “Orbifold Gromov–Witten theory”, Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math., 310, Amer. Math. Soc., Providence, RI, 2002, 25–85, arXiv: math.AG/0103156 | DOI | MR | Zbl
[7] Chen W., Ruan Y., “A new cohomology theory of orbifold”, Comm. Math. Phys., 248 (2004), 1–31, arXiv: math.AG/0004129 | DOI | MR | Zbl
[8] Cho C.-H., Oh Y.-G., “Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds”, Asian J. Math., 10 (2006), 773–814, arXiv: math.SG/0308225 | DOI | MR | Zbl
[9] Cho C.-H., Poddar M., “Holomorphic orbi-discs and Lagrangian Floer cohomology of symplectic toric orbifolds”, J. Differential Geom., 98 (2014), 21–116, arXiv: 1206.3994 | DOI | MR | Zbl
[10] Cho C.-H., Shin H.-S., “Chern–Weil Maslov index and its orbifold analogue”, Asian J. Math., 20 (2016), 1–19, arXiv: 1202.0556 | DOI | MR
[11] Coates T., Corti A., Iritani H., Tseng H.-H., “A mirror theorem for toric stacks”, Compos. Math., 151 (2015), 1878–1912, arXiv: 1310.4163 | DOI | MR | Zbl
[12] Cox D. A., Little J. B., Schenck H. K., Toric varieties, Graduate Studies in Mathematics, 124, Amer. Math. Soc., Providence, RI, 2011 | DOI | MR | Zbl
[13] Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory: anomaly and obstruction, AMS/IP Studies in Advanced Mathematics, 46, Amer. Math. Soc., Providence, RI, 2009 | MR
[14] Fukaya K., Oh Y.-G., Ohta H., Ono K., “Lagrangian Floer theory on compact toric manifolds. I”, Duke Math. J., 151 (2010), 23–174, arXiv: 0802.1703 | DOI | MR
[15] Fukaya K., Oh Y.-G., Ohta H., Ono K., “Lagrangian Floer theory on compact toric manifolds II: bulk deformations”, Selecta Math. (N.S.), 17 (2011), 609–711, arXiv: 0810.5654 | DOI | MR | Zbl
[16] Fukaya K., Oh Y.-G., Ohta H., Ono K., Technical details on Kuranishi structure and virtual fundamental chain, arXiv: 1209.4410
[17] Fukaya K., Oh Y.-G., Ohta H., Ono K., “Lagrangian Floer theory and mirror symmetry on compact toric manifolds”, Astérisque, 376, 2016, vi+340 pp., arXiv: 1009.1648 | MR | Zbl
[18] González E., Iritani H., “Seidel elements and mirror transformations”, Selecta Math. (N.S.), 18 (2012), 557–590, arXiv: 1103.4171 | DOI | MR | Zbl
[19] Gross M., Siebert B., “From real affine geometry to complex geometry”, Ann. of Math., 174 (2011), 1301–1428, arXiv: math.AG/0703822 | DOI | MR | Zbl
[20] Hausel T., Sturmfels B., “Toric hyper{K}ähler varieties”, Doc. Math., 7 (2002), 495–534, arXiv: math.AG/0203096 | MR | Zbl
[21] Iritani H., “An integral structure in quantum cohomology and mirror symmetry for toric orbifolds”, Adv. Math., 222 (2009), 1016–1079, arXiv: 0903.1463 | DOI | MR | Zbl
[22] Jiang Y., “The orbifold cohomology ring of simplicial toric stack bundles”, Illinois J. Math., 52 (2008), 493–514, arXiv: math.AG/0504563 | DOI | MR | Zbl
[23] McDuff D., Wehrheim K., “Smooth Kuranishi atlases with isotropy”, Geom. Topol., 21 (2017), 2725–2809, arXiv: 1508.01556 | DOI | MR | Zbl
[24] Ruddat H., Siebert B., “Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations”, Publ. Math. Inst. Hautes Études Sci. (to appear) | DOI | MR
[25] Strominger A., Yau S.-T., Zaslow E., “Mirror symmetry is $T$-duality”, Nuclear Phys. B, 479 (1996), 243–259, arXiv: hep-th/9606040 | DOI | MR | Zbl