Mots-clés : Lie algebras
@article{SIGMA_2020_16_a53,
author = {Moulay Barkatou and Thomas Cluzeau and Lucia Di Vizio and Jacques-Arthur Weil},
title = {Reduced {Forms} of {Linear} {Differential} {Systems} and the {Intrinsic} {Galois{\textendash}Lie} {Algebra} of {Katz}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a53/}
}
TY - JOUR AU - Moulay Barkatou AU - Thomas Cluzeau AU - Lucia Di Vizio AU - Jacques-Arthur Weil TI - Reduced Forms of Linear Differential Systems and the Intrinsic Galois–Lie Algebra of Katz JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a53/ LA - en ID - SIGMA_2020_16_a53 ER -
%0 Journal Article %A Moulay Barkatou %A Thomas Cluzeau %A Lucia Di Vizio %A Jacques-Arthur Weil %T Reduced Forms of Linear Differential Systems and the Intrinsic Galois–Lie Algebra of Katz %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a53/ %G en %F SIGMA_2020_16_a53
Moulay Barkatou; Thomas Cluzeau; Lucia Di Vizio; Jacques-Arthur Weil. Reduced Forms of Linear Differential Systems and the Intrinsic Galois–Lie Algebra of Katz. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a53/
[1] Amzallag E., Minchenko A., Pogudin G., Degree bound for toric envelope of a linear algebraic group, arXiv: 1809.06489
[2] André Y., “Sur la conjecture des $p$-courbures de Grothendieck–Katz et un problème de Dwork”, Geometric Aspects of Dwork Theory, v. I, II, Walter de Gruyter, Berlin, 2004, 55–112 | MR | Zbl
[3] Aparicio-Monforte A., Compoint E., Weil J.-A., “A characterization of reduced forms of linear differential systems”, J. Pure Appl. Algebra, 217 (2013), 1504–1516 | DOI | MR | Zbl
[4] Barkatou M., Cluzeau T., Weil J.-A., Di Vizio L., “Computing the Lie algebra of the differential Galois group of a linear differential system”, Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2016, 63–70 | DOI | MR | Zbl
[5] Bertrand D., “Groupes algébriques et équations différentielles linéaires”, Astérisque, 206, no. 750, 1992, 4, 183–204 | MR | Zbl
[6] Borel A., Linear algebraic groups, Graduate Texts in Mathematics, 126, 2nd ed., Springer-Verlag, New York, 1991 | DOI | MR | Zbl
[7] Combot T., Sanabria C., “A symplectic Kovacic's algorithm in dimension 4”, Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, ISSAC'18, ACM, New York, 2018, 143–150, arXiv: 1802.01023 | DOI | MR | Zbl
[8] Compoint E., Singer M. F., “Computing Galois groups of completely reducible differential equations”, J. Symbolic Comput., 28 (1999), 473–494 | DOI | MR | Zbl
[9] Dreyfus T., Weil J.-A., Computing the Lie algebra of the differential Galois group: the reducible case, arXiv: 1904.07925
[10] Feng R., “Hrushovski's algorithm for computing the Galois group of a linear differential equation”, Adv. in Appl. Math., 65 (2015), 1–37 | DOI | MR | Zbl
[11] Hessinger S. A., “Computing the Galois group of a linear differential equation of order four”, Appl. Algebra Engrg. Comm. Comput., 11 (2001), 489–536 | DOI | MR | Zbl
[12] Hrushovski E., “Computing the Galois group of a linear differential equation”, Differential Galois Theory (Bȩdlewo, 2001), Banach Center Publ., 58, Polish Acad. Sci. Inst. Math., Warsaw, 2002, 97–138 | DOI | MR | Zbl
[13] Katz N. M., “A conjecture in the arithmetic theory of differential equations”, Bull. Soc. Math. France, 110 (1982), 203–239 | DOI | MR | Zbl
[14] Kovacic J. J., “An algorithm for solving second order linear homogeneous differential equations”, J. Symbolic Comput., 2 (1986), 3–43 | DOI | MR | Zbl
[15] Nguyen K. A., van der Put M., “Solving linear differential equations”, Pure Appl. Math. Q., 6 (2010), 173–208 | DOI | MR | Zbl
[16] Person A. C., Solving homogeneous linear differential equations of order 4 in terms of equations of smaller order, Ph.D. Thesis, North Carolina State University, 2002 | MR
[17] Seidenberg A., “Some basic theorems in differential algebra (characteristic $p$, arbitrary)”, Trans. Amer. Math. Soc., 73 (1952), 174–190 | DOI | MR | Zbl
[18] Seidenberg A., “Contribution to the Picard–Vessiot theory of homogeneous linear differential equations”, Amer. J. Math., 78 (1956), 808–818 | DOI | MR | Zbl
[19] Singer M. F., Ulmer F., “Galois groups of second and third order linear differential equations”, J. Symbolic Comput., 16 (1993), 9–36 | DOI | MR | Zbl
[20] van der Hoeven J., “Around the numeric-symbolic computation of differential Galois groups”, J. Symbolic Comput., 42 (2007), 236–264 | DOI | MR | Zbl
[21] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl
[22] van Hoeij M., “Decomposing a 4th order linear differential equation as a symmetric product”, Differential Galois Theory (Bȩdlewo, 2001), Banach Center Publ., 58, Polish Acad. Sci. Inst. Math., Warsaw, 2002, 89–96 | DOI | MR | Zbl
[23] van Hoeij M., Ragot J. F., Ulmer F., Weil J.-A., “Liouvillian solutions of linear differential equations of order three and higher”, J. Symbolic Comput., 28 (1999), 589–609 | DOI | MR | Zbl
[24] Wei J., Norman E., “On global representations of the solutions of linear differential equations as a product of exponentials”, Proc. Amer. Math. Soc., 15 (1964), 327–334 | DOI | MR | Zbl