@article{SIGMA_2020_16_a52,
author = {Julia Bernatska and Yaacov Kopeliovich},
title = {Addition of {Divisors} on {Hyperelliptic} {Curves} via {Interpolation} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a52/}
}
TY - JOUR AU - Julia Bernatska AU - Yaacov Kopeliovich TI - Addition of Divisors on Hyperelliptic Curves via Interpolation Polynomials JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a52/ LA - en ID - SIGMA_2020_16_a52 ER -
Julia Bernatska; Yaacov Kopeliovich. Addition of Divisors on Hyperelliptic Curves via Interpolation Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a52/
[1] Baker H. F., Abelian functions. Abel's theorem and the allied theory of theta functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[2] Bukhshtaber V. M., Leykin D. V., “Heat equations in a nonholomic frame”, Funct. Anal. Appl., 38 (2004), 88–101 | DOI | MR | Zbl
[3] Bukhshtaber V. M., Leykin D. V., “Addition laws on Jacobians of plane algebraic curves”, Proc. Steklov Inst. Math., 251 (2005), 49–120 | MR | Zbl
[4] Cantor D. G., “Computing in the Jacobian of a hyperelliptic curve”, Math. Comp., 48 (1987), 95–101 | DOI | MR | Zbl
[5] de Jong R., Müller J. S., “Canonical heights and division polynomials”, Math. Proc. Cambridge Philos. Soc., 157 (2014), 357–373, arXiv: 1306.4030 | DOI | MR | Zbl
[6] Gaudry P., “Fast genus 2 arithmetic based on theta functions”, J. Math. Cryptol., 1 (2007), 243–265 | DOI | MR | Zbl
[7] Shaska T., Kopeliovich Y., Additiona laws on Jacobians from a geometric point of view, arXiv: 1907.11070
[8] Shoup V., A computational introduction to number theory and algebra, 2nd ed., Cambridge University Press, Cambridge, 2009 | MR | Zbl
[9] Sutherland A. V., “Fast Jacobian arithmetic for hyperelliptic curves of genus 3”, Proceedings of the Thirteenth Algorithmic Number Theory Symposium, Open Book Ser., 2, Math. Sci. Publ., Berkeley, CA, 2019, 425–442, arXiv: 1607.08602 | DOI | MR
[10] Uchida Y., “Division polynomials and canonical local heights on hyperelliptic Jacobians”, Manuscripta Math., 134 (2011), 273–308 | DOI | MR | Zbl