@article{SIGMA_2020_16_a51,
author = {Claudia Maria Chanu and Giovanni Rastelli},
title = {On the {Extended-Hamiltonian} {Structure} of {Certain} {Superintegrable} {Systems} on {Constant-Curvature} {Riemannian} and {Pseudo-Riemannian} {Surfaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a51/}
}
TY - JOUR AU - Claudia Maria Chanu AU - Giovanni Rastelli TI - On the Extended-Hamiltonian Structure of Certain Superintegrable Systems on Constant-Curvature Riemannian and Pseudo-Riemannian Surfaces JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a51/ LA - en ID - SIGMA_2020_16_a51 ER -
%0 Journal Article %A Claudia Maria Chanu %A Giovanni Rastelli %T On the Extended-Hamiltonian Structure of Certain Superintegrable Systems on Constant-Curvature Riemannian and Pseudo-Riemannian Surfaces %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a51/ %G en %F SIGMA_2020_16_a51
Claudia Maria Chanu; Giovanni Rastelli. On the Extended-Hamiltonian Structure of Certain Superintegrable Systems on Constant-Curvature Riemannian and Pseudo-Riemannian Surfaces. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a51/
[1] Benenti S., “Intrinsic characterization of the variable separation in the Hamilton–Jacobi equation”, J. Math. Phys., 38 (1997), 6578–6602 | DOI | MR | Zbl
[2] Campoamor-Stursberg R., “Superposition of super-integrable pseudo-Euclidean potentials in $N=2$ with a fundamental constant of motion of arbitrary order in the momenta”, J. Math. Phys., 55 (2014), 042904, 11 pp. | DOI | MR | Zbl
[3] Chanu C. M., Degiovanni L., Rastelli G., “First integrals of extended Hamiltonians in $n+1$ dimensions generated by powers of an operator”, SIGMA, 7 (2011), 038, 12 pp., arXiv: 1101.5975 | DOI | MR | Zbl
[4] Chanu C. M., Degiovanni L., Rastelli G., “Polynomial constants of motion for Calogero-type systems in three dimensions”, J. Math. Phys., 52 (2011), 032903, 7 pp., arXiv: 1002.2735 | DOI | MR | Zbl
[5] Chanu C. M., Degiovanni L., Rastelli G., “Generalizations of a method for constructing first integrals of a class of natural Hamiltonians and some remarks about quantization”, J. Phys. Conf. Ser., 343 (2012), 012101, 15 pp., arXiv: 1111.0030 | DOI
[6] Chanu C. M., Degiovanni L., Rastelli G., “Superintegrable extensions of superintegrable systems”, SIGMA, 8 (2012), 070, 12 pp., arXiv: 1210.3126 | DOI | MR | Zbl
[7] Chanu C. M., Degiovanni L., Rastelli G., “Extensions of Hamiltonian systems dependent on a rational parameter”, J. Math. Phys., 55 (2014), 122703, 11 pp., arXiv: 1310.5690 | DOI | MR | Zbl
[8] Chanu C. M., Degiovanni L., Rastelli G., “The Tremblay–Turbiner–Winternitz system as extended Hamiltonian”, J. Math. Phys., 55 (2014), 122701, 8 pp., arXiv: 1404.4825 | DOI | MR | Zbl
[9] Chanu C. M., Degiovanni L., Rastelli G., “Extended Hamiltonians, coupling-constant metamorphosis and the Post–Winternitz system”, SIGMA, 11 (2015), 094, 9 pp., arXiv: 1509.07288 | DOI | MR | Zbl
[10] Chanu C. M., Rastelli G., “Extended Hamiltonians and shift, ladder functions and operators”, Ann. Physics, 386 (2017), 254–274, arXiv: 1705.09519 | DOI | MR | Zbl
[11] Chanu C. M., Rastelli G., “Extensions of non-natural Hamiltonians”, Theoret. and Math. Phys. (to appear) , arXiv: 2001.04152 | MR
[12] Hietarinta J., Grammaticos B., Dorizzi B., Ramani A., “Coupling-constant metamorphosis and duality between integrable Hamiltonian systems”, Phys. Rev. Lett., 53 (1984), 1707–1710 | DOI | MR
[13] Kalnins E. G., Kress J. M., Miller Jr. W., Separation of variables and superintegrability. The symmetry of solvable systems, IOP Expanding Physics, IOP Publishing, Bristol, 2018 | DOI | MR | Zbl
[14] Kalnins E. G., Miller Jr. W., Post S., “Coupling constant metamorphosis and $N$th-order symmetries in classical and quantum mechanics”, J. Phys. A: Math. Theor., 43 (2010), 035202, 20 pp., arXiv: 0908.4393 | DOI | MR | Zbl
[15] Kuru Ş, Negro J., “Factorizations of one-dimensional classical systems”, Ann. Physics, 323 (2008), 413–431, arXiv: 0709.4649 | DOI | MR | Zbl
[16] Maciejewski A. J., Przybylska M., Tsiganov A. V., “On algebraic construction of certain integrable and super-integrable systems”, Phys. D, 240 (2011), 1426–1448, arXiv: 1011.3249 | DOI | MR | Zbl
[17] Miller Jr. W., Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl
[18] Post S., Winternitz P., “An infinite family of superintegrable deformations of the Coulomb potential”, J. Phys. A: Math. Phys., 43 (2010), 222001, 11 pp., arXiv: 1003.5230 | DOI | MR | Zbl
[19] Rañada M. F., Santander M., “Superintegrable systems on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$”, J. Math. Phys., 40 (1999), 5026–5057 | DOI | MR