Mots-clés : group action, invertible polynomial
@article{SIGMA_2020_16_a50,
author = {Wolfgang Ebeling and Sabir M. Gusein-Zade},
title = {Dual {Invertible} {Polynomials} with {Permutation} {Symmetries} and the {Orbifold} {Euler} {Characteristic}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a50/}
}
TY - JOUR AU - Wolfgang Ebeling AU - Sabir M. Gusein-Zade TI - Dual Invertible Polynomials with Permutation Symmetries and the Orbifold Euler Characteristic JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a50/ LA - en ID - SIGMA_2020_16_a50 ER -
%0 Journal Article %A Wolfgang Ebeling %A Sabir M. Gusein-Zade %T Dual Invertible Polynomials with Permutation Symmetries and the Orbifold Euler Characteristic %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a50/ %G en %F SIGMA_2020_16_a50
Wolfgang Ebeling; Sabir M. Gusein-Zade. Dual Invertible Polynomials with Permutation Symmetries and the Orbifold Euler Characteristic. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a50/
[1] Atiyah M., Segal G., “On equivariant Euler characteristics”, J. Geom. Phys., 6 (1989), 671–677 | DOI | MR | Zbl
[2] Berglund P., Henningson M., “Landau–Ginzburg orbifolds, mirror symmetry and the elliptic genus”, Nuclear Phys. B, 433 (1995), 311–332, arXiv: hep-th/9401029 | DOI | MR | Zbl
[3] Berglund P., Hübsch T., “A generalized construction of mirror manifolds”, Nuclear Phys. B, 393 (1993), 377–391, arXiv: hep-th/9201014 | DOI | MR | Zbl
[4] Ebeling W., Gusein-Zade S. M., “Orbifold Euler characteristics for dual invertible polynomials”, Mosc. Math. J., 12 (2012), 49–54, arXiv: 1107.5542 | DOI | MR | Zbl
[5] Ebeling W., Gusein-Zade S. M., “Saito duality between Burnside rings for invertible polynomials”, Bull. Lond. Math. Soc., 44 (2012), 814–822, arXiv: 1105.1964 | DOI | MR | Zbl
[6] Ebeling W., Gusein-Zade S. M., “A version of the Berglund–Hübsch–Henningson duality with non-abelian groups”, Int. Math. Res. Not. (to appear) | DOI
[7] Ebeling W., Gusein-Zade S. M., “On the orbifold Euler characteristics of dual invertible polynomials with non-abelian symmetry groups”, Pure Appl. Math. Q. (to appear) | MR
[8] Ebeling W., Takahashi A., “Variance of the exponents of orbifold Landau–Ginzburg models”, Math. Res. Lett., 20 (2013), 51–65, arXiv: 1203.3947 | DOI | MR | Zbl
[9] Gusein-Zade S. M., “Equivariant analogues of the Euler characteristic and Macdonald type equations”, Russian Math. Surveys, 72 (2017), 1–32 | DOI | MR | Zbl
[10] Gusein-Zade S. M., Luengo I., Melle-Hernández A., “Grothendieck ring of varieties with actions of finite groups”, Proc. Edinb. Math. Soc., 62 (2019), 925–948, arXiv: 1706.00918 | DOI | MR | Zbl
[11] Hirzebruch F., Höfer T., “On the Euler number of an orbifold”, Math. Ann., 286 (1990), 255–260 | DOI | MR | Zbl
[12] Kawai T., Yang S. K., “Duality of orbifoldized elliptic genera”, Progr. Theoret. Phys. Suppl., 118 (1995), 277–297 | DOI | MR | Zbl
[13] Krawitz M., FJRW-rings and Landau–Ginzburg mirror symmetry, arXiv: 0906.0796 | MR
[14] Krawitz M., FJRW rings and Landau–Ginzburg mirror symmetry, Ph.D. Thesis, University of Michigan, 2010 | MR
[15] Kreuzer M., “The mirror map for invertible LG models”, Phys. Lett. B, 328 (1994), 312–318, arXiv: hep-th/9402114 | DOI | MR
[16] Kreuzer M., Skarke H., “On the classification of quasihomogeneous functions”, Comm. Math. Phys., 150 (1992), 137–147, arXiv: hep-th/9202039 | DOI | MR | Zbl
[17] Mukai D., Nonabelian Landau–Ginzburg orbifolds and Calabi–Yau/Landau–Ginzburg correspondence, arXiv: 1704.04889
[18] Varchenko A. N., “Zeta-function of monodromy and Newton's diagram”, Invent. Math., 37 (1976), 253–262 | DOI | MR | Zbl
[19] Yu X., “McKay correspondence and new Calabi–Yau threefolds”, Int. Math. Res. Not., 2017 (2017), 6444–6468, arXiv: 1507.00577 | DOI | MR | Zbl