Dual Invertible Polynomials with Permutation Symmetries and the Orbifold Euler Characteristic
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

P. Berglund, T. Hübsch, and M. Henningson proposed a method to construct mirror symmetric Calabi–Yau manifolds. They considered a pair consisting of an invertible polynomial and of a finite (abelian) group of its diagonal symmetries together with a dual pair. A. Takahashi suggested a method to generalize this construction to symmetry groups generated by some diagonal symmetries and some permutations of variables. In a previous paper, we explained that this construction should work only under a special condition on the permutation group called parity condition (PC). Here we prove that, if the permutation group is cyclic and satisfies PC, then the reduced orbifold Euler characteristics of the Milnor fibres of dual pairs coincide up to sign.
Keywords: orbifold Euler characteristic, mirror symmetry, Berglund–Hübsch–Henningson–Takahashi duality.
Mots-clés : group action, invertible polynomial
@article{SIGMA_2020_16_a50,
     author = {Wolfgang Ebeling and Sabir M. Gusein-Zade},
     title = {Dual {Invertible} {Polynomials} with {Permutation} {Symmetries} and the {Orbifold} {Euler} {Characteristic}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a50/}
}
TY  - JOUR
AU  - Wolfgang Ebeling
AU  - Sabir M. Gusein-Zade
TI  - Dual Invertible Polynomials with Permutation Symmetries and the Orbifold Euler Characteristic
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a50/
LA  - en
ID  - SIGMA_2020_16_a50
ER  - 
%0 Journal Article
%A Wolfgang Ebeling
%A Sabir M. Gusein-Zade
%T Dual Invertible Polynomials with Permutation Symmetries and the Orbifold Euler Characteristic
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a50/
%G en
%F SIGMA_2020_16_a50
Wolfgang Ebeling; Sabir M. Gusein-Zade. Dual Invertible Polynomials with Permutation Symmetries and the Orbifold Euler Characteristic. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a50/

[1] Atiyah M., Segal G., “On equivariant Euler characteristics”, J. Geom. Phys., 6 (1989), 671–677 | DOI | MR | Zbl

[2] Berglund P., Henningson M., “Landau–Ginzburg orbifolds, mirror symmetry and the elliptic genus”, Nuclear Phys. B, 433 (1995), 311–332, arXiv: hep-th/9401029 | DOI | MR | Zbl

[3] Berglund P., Hübsch T., “A generalized construction of mirror manifolds”, Nuclear Phys. B, 393 (1993), 377–391, arXiv: hep-th/9201014 | DOI | MR | Zbl

[4] Ebeling W., Gusein-Zade S. M., “Orbifold Euler characteristics for dual invertible polynomials”, Mosc. Math. J., 12 (2012), 49–54, arXiv: 1107.5542 | DOI | MR | Zbl

[5] Ebeling W., Gusein-Zade S. M., “Saito duality between Burnside rings for invertible polynomials”, Bull. Lond. Math. Soc., 44 (2012), 814–822, arXiv: 1105.1964 | DOI | MR | Zbl

[6] Ebeling W., Gusein-Zade S. M., “A version of the Berglund–Hübsch–Henningson duality with non-abelian groups”, Int. Math. Res. Not. (to appear) | DOI

[7] Ebeling W., Gusein-Zade S. M., “On the orbifold Euler characteristics of dual invertible polynomials with non-abelian symmetry groups”, Pure Appl. Math. Q. (to appear) | MR

[8] Ebeling W., Takahashi A., “Variance of the exponents of orbifold Landau–Ginzburg models”, Math. Res. Lett., 20 (2013), 51–65, arXiv: 1203.3947 | DOI | MR | Zbl

[9] Gusein-Zade S. M., “Equivariant analogues of the Euler characteristic and Macdonald type equations”, Russian Math. Surveys, 72 (2017), 1–32 | DOI | MR | Zbl

[10] Gusein-Zade S. M., Luengo I., Melle-Hernández A., “Grothendieck ring of varieties with actions of finite groups”, Proc. Edinb. Math. Soc., 62 (2019), 925–948, arXiv: 1706.00918 | DOI | MR | Zbl

[11] Hirzebruch F., Höfer T., “On the Euler number of an orbifold”, Math. Ann., 286 (1990), 255–260 | DOI | MR | Zbl

[12] Kawai T., Yang S. K., “Duality of orbifoldized elliptic genera”, Progr. Theoret. Phys. Suppl., 118 (1995), 277–297 | DOI | MR | Zbl

[13] Krawitz M., FJRW-rings and Landau–Ginzburg mirror symmetry, arXiv: 0906.0796 | MR

[14] Krawitz M., FJRW rings and Landau–Ginzburg mirror symmetry, Ph.D. Thesis, University of Michigan, 2010 | MR

[15] Kreuzer M., “The mirror map for invertible LG models”, Phys. Lett. B, 328 (1994), 312–318, arXiv: hep-th/9402114 | DOI | MR

[16] Kreuzer M., Skarke H., “On the classification of quasihomogeneous functions”, Comm. Math. Phys., 150 (1992), 137–147, arXiv: hep-th/9202039 | DOI | MR | Zbl

[17] Mukai D., Nonabelian Landau–Ginzburg orbifolds and Calabi–Yau/Landau–Ginzburg correspondence, arXiv: 1704.04889

[18] Varchenko A. N., “Zeta-function of monodromy and Newton's diagram”, Invent. Math., 37 (1976), 253–262 | DOI | MR | Zbl

[19] Yu X., “McKay correspondence and new Calabi–Yau threefolds”, Int. Math. Res. Not., 2017 (2017), 6444–6468, arXiv: 1507.00577 | DOI | MR | Zbl