Mots-clés : monodromy, moduli space
@article{SIGMA_2020_16_a5,
author = {Martin Klime\v{s}},
title = {Analytic {Classification} of {Families} of {Linear} {Differential} {Systems} {Unfolding} a {Resonant} {Irregular} {Singularity}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a5/}
}
TY - JOUR AU - Martin Klimeš TI - Analytic Classification of Families of Linear Differential Systems Unfolding a Resonant Irregular Singularity JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a5/ LA - en ID - SIGMA_2020_16_a5 ER -
%0 Journal Article %A Martin Klimeš %T Analytic Classification of Families of Linear Differential Systems Unfolding a Resonant Irregular Singularity %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a5/ %G en %F SIGMA_2020_16_a5
Martin Klimeš. Analytic Classification of Families of Linear Differential Systems Unfolding a Resonant Irregular Singularity. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a5/
[1] Babbitt D. G., Varadarajan V. S., Local moduli for meromorphic differential equations, Astérisque, 169–170, 1989, 217 pp. | MR | Zbl
[2] Balser W., Formal power series and linear systems of meromorphic ordinary differential equations, Universitext, Springer-Verlag, New York 2000 | DOI | MR | Zbl
[3] Balser W., Jurkat W. B., Lutz D. A., “Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations”, J. Math. Anal. Appl., 71 (1979), 48–94 | DOI | MR | Zbl
[4] Balser W., Jurkat W. B., Lutz D. A., “A general theory of invariants for meromorphic differential equations. I Formal invariants”, Funkcial. Ekvac., 22 (1979), 197–221 | MR | Zbl
[5] Balser W., Jurkat W. B., Lutz D. A., “A general theory of invariants for meromorphic differential equations. II Proper invariants”, Funkcial. Ekvac., 22 (1979), 257–283 | MR | Zbl
[6] Benzinger H. E., “Plane autonomous systems with rational vector fields”, Trans. Amer. Math. Soc., 326 (1991), 465–483 | DOI | MR | Zbl
[7] Bolibrukh A. A., “On sufficient conditions for the positive solvability of the Riemann–Hilbert problem”, Math. Notes, 51 (1992), 110–117 | DOI | MR | Zbl
[8] Bolibrukh A. A., “On analytic transformation to Birkhoff standard form”, Math. Dokl., 49 (1994), 150–153 | MR | Zbl
[9] Branner B., Dias K., “Classification of complex polynomial vector fields in one complex variable”, J. Difference Equ. Appl., 16 (2010), 463–517, arXiv: 0905.2293 | DOI | MR | Zbl
[10] Coddington E. A., Levinson N., Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1955 | MR | Zbl
[11] Douady A., Estrada F., Sentenac P., Champs de vecteurs polynômiaux sur ${\mathbb C}$, unpublished manuscript, 2005
[12] Duval A., “Biconfluence et groupe de Galois”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 38 (1991), 211–223 | MR | Zbl
[13] Glutsuk A. A., “Stokes operators via limit monodromy of generic perturbation”, J. Dynam. Control Systems, 5 (1999), 101–135 | DOI | MR | Zbl
[14] Glutsyuk A. A., “Resonant confluence of singular points and Stokes phenomena”, J. Dynam. Control Systems, 10 (2004), 253–302 | DOI | MR | Zbl
[15] Hurtubise J., Lambert C., Rousseau C., “Complete system of analytic invariants for unfolded differential linear systems with an irregular singularity of Poincaré rank $k$”, Mosc. Math. J., 14 (2014), 309–338 | DOI | MR | Zbl
[16] Hurtubise J., Rousseau C., “Moduli space for generic unfolded differential linear systems”, Adv. Math., 307 (2017), 1268–1323, arXiv: 1508.06616 | DOI | MR | Zbl
[17] Ilyashenko Yu., “Realization of irreducible monodromy by Fuchsian systems and reduction to the Birkhoff standard form (by Andrey Bolibrukh)”, Differential Equations and Quantum Groups, IRMA Lect. Math. Theor. Phys., 9, Eur. Math. Soc., Zürich, 2007, 1–8 | DOI | MR | Zbl
[18] Ilyashenko Yu., Yakovenko S., Lectures on analytic differential equations, Graduate Studies in Mathematics, 86, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl
[19] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects of Mathematics, E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | DOI | MR
[20] Jurkat W., Lutz D., Peyerimhoff A., “Birkhoff invariants and effective calcualtions for meromorphic linear differential equations. I”, J. Math. Anal. Appl., 53 (1976), 438–470 | DOI | MR | Zbl
[21] Jurkat W. B., Lutz D. A., Peyerimhoff A., “Birkhoff invariants and effective calculations for meromorphic linear differential equations. II”, Houston J. Math., 2 (1976), 207–238 | MR | Zbl
[22] Kawai T., Takei Y., Algebraic analysis of singular perturbation theory, Translations of Mathematical Monographs, 227, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl
[23] Klimeš M., Wild monodromy of the fifth Painlevé equation and its action on the wild character variety: approach of confluence, arXiv: 1609.05185
[24] Klimeš M., Rousseau C., “Generic $2$-parameter perturbations of parabolic singular points of vector fields in $\mathbb{C}$”, Conform. Geom. Dyn., 22 (2018), 141–184, arXiv: 1710.00883 | DOI | MR | Zbl
[25] Kohno M., Global analysis in linear differential equations, Mathematics and its Applications, 471, Kluwer Academic Publishers, Dordrecht, 1999 | DOI | MR | Zbl
[26] Kostov V. P., “Normal forms of unfoldings of non-Fuchsian systems”, C. R. Acad. Sci. Paris Sér. I Math., 318 (1994), 623–628 | MR | Zbl
[27] Lambert C., Rousseau C., “The Stokes phenomenon in the confluence of the hypergeometric equation using Riccati equation”, J. Differential Equations, 244 (2008), 2641–2664, arXiv: 0706.1773 | DOI | MR | Zbl
[28] Lambert C., Rousseau C., “Complete system of analytic invariants for unfolded differential linear systems with an irregular singularity of Poincaré rank 1”, Mosc. Math. J., 12 (2012), 77–138, arXiv: 1105.2269 | DOI | MR | Zbl
[29] Muciño Raymundo J., Valero-Valdés C., “Bifurcations of meromorphic vector fields on the Riemann sphere”, Ergodic Theory Dynam. Systems, 15 (1995), 1211–1222 | DOI | MR | Zbl
[30] Mullin F. E., “On the regular perturbation of the subdominant solution to second order linear ordinary differential equations with polynomial coefficients”, Funkcial. Ekvac., 11 (1968), 1–38 | MR | Zbl
[31] Parise L., Confluence de singularités régulieres d'équations différentielles en une singularité irréguliere. Modèle de Garnier, Ph.D. Thesis, IRMA, Strasbourg, 2001 http://www-irma.u-strasbg.fr/annexes/publications/pdf/01020.pdf
[32] Ramis J.-P., “Confluence et résurgence”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 703–716 | MR | Zbl
[33] Sabbah C., Isomonodromic deformations and Frobenius manifolds. An introduction, Universitext, Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2007 | MR | Zbl
[34] Schäfke R., “Confluence of several regular singular points into an irregular singular one”, J. Dynam. Control Systems, 4 (1998), 401–424 | DOI | MR | Zbl
[35] Sibuya Y., Global theory of a second order linear ordinary differential equation with a polynomial coefficient, North-Holland Mathematics Studies, 18, North-Holland Publishing Co., Amsterdam–Oxford, 1975 | MR | Zbl
[36] Sibuya Y., Linear differential equations in the complex domain: problems of analytic continuation, Translations of Mathematical Monographs, 82, Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl
[37] Tahar G., “Counting saddle connections in flat surfaces with poles of higher order”, Geom. Dedicata, 196 (2018), 145–186, arXiv: 1606.03705 | DOI | MR | Zbl
[38] Tomasini J., “Topological enumeration of complex polynomial vector fields”, Ergodic Theory Dynam. Systems, 35 (2015), 1315–1344, arXiv: 1307.3850 | DOI | MR | Zbl
[39] Wasow W., Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, 14, John Wiley Sons, Inc., New York–London–Sydney, 1965 | MR | Zbl
[40] Zhang C., “Confluence et phénomène de Stokes”, J. Math. Sci. Univ. Tokyo, 3 (1996), 91–107 | MR | Zbl