On the Notion of Noncommutative Submanifold
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review the notion of submanifold algebra, as introduced by T. Masson, and discuss some properties and examples. A submanifold algebra of an associative algebra $A$ is a quotient algebra $B$ such that all derivations of $B$ can be lifted to $A$. We will argue that in the case of smooth functions on manifolds every quotient algebra is a submanifold algebra, derive a topological obstruction when the algebras are deformation quantizations of symplectic manifolds, present some (commutative and noncommutative) examples and counterexamples.
Keywords: submanifold algebras, tangential star products, coisotropic reduction.
@article{SIGMA_2020_16_a49,
     author = {Francesco D'Andrea},
     title = {On the {Notion} of {Noncommutative} {Submanifold}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a49/}
}
TY  - JOUR
AU  - Francesco D'Andrea
TI  - On the Notion of Noncommutative Submanifold
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a49/
LA  - en
ID  - SIGMA_2020_16_a49
ER  - 
%0 Journal Article
%A Francesco D'Andrea
%T On the Notion of Noncommutative Submanifold
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a49/
%G en
%F SIGMA_2020_16_a49
Francesco D'Andrea. On the Notion of Noncommutative Submanifold. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a49/

[1] Arnlind J., Norkvist A. T., Noncommutative minimal embeddings and morphisms of pseudo-Riemannian calculi, arXiv: 1906.03885 | MR

[2] Bieliavsky P., Gutt S., Bordemann M., Waldmann S., “Traces for star products on the dual of a Lie algebra”, Rev. Math. Phys., 15 (2003), 425–445 | DOI | MR | Zbl

[3] Billig Y., Futorny V., “Lie algebras of vector fields on smooth affine varieties”, Comm. Algebra, 46 (2018), 3413–3429 | DOI | MR | Zbl

[4] Blackadar B., Operator algebras. Theory of $C^*$-algebras and von Neumann algebras, Encyclopaedia of Mathematical Sciences, 122, Springer-Verlag, Berlin, 2006 | DOI | MR

[5] Bordemann M., “(Bi)modules, morphisms, and reduction of star-products: the symplectic case, foliations, and obstructions”, Trav. Math., 16, University of Luxembourg, Luxembourg, 2005, 9–40 | MR | Zbl

[6] Carotenuto A., Da̧browski L., “Spin geometry of the rational noncommutative torus”, J. Geom. Phys., 144 (2019), 28–42 | DOI | MR | Zbl

[7] Cattaneo A. S., Felder G., “Relative formality theorem and quantisation of coisotropic submanifolds”, Adv. Math., 208 (2007), 521–548 | DOI | DOI | MR | Zbl

[8] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl

[9] Connes A., Marcolli M., Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, 55, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[10] De Nicola A., Esposito C., “Reduction of pre-Hamiltonian actions”, J. Geom. Phys., 115 (2017), 178–190, arXiv: 1507.08821 | DOI | MR | Zbl

[11] Dippell M., Esposito C., Waldmann S., “Coisotropic triples, reduction and classical limit”, Doc. Math., 24 (2019), 1811–1853 | DOI | DOI | MR | Zbl

[12] Dixmier J., Enveloping algebras, North-Holland Mathematical Library, 14, North-Holland Publishing Co., Amsterdam–New York–Oxford, 1977 | MR | Zbl

[13] Drozd Yu.A., Kirichenko V. V., Finite-dimensional algebras, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl

[14] Dubois-Violette M., “Dérivations et calcul différentiel non commutatif”, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 403–408 | MR | Zbl

[15] Dubois-Violette M., “Noncommutative differential geometry, quantum mechanics and gauge theory”, Differential Geometric Methods in Theoretical Physics (Rapallo, 1990), Lecture Notes in Phys., 375, eds. C. Bartocci, U. Bruzzo, R. Cianci, Springer, Berlin, 1991, 13–24 | DOI | MR

[16] Dubois-Violette M., “Lectures on graded differential algebras and noncommutative geometry”, Noncommutative Differential Geometry and its Applications to Physics (Shonan, 1999), Math. Phys. Stud., 23, eds. Y. Maeda, H. Moriyoshi, H. Omori, D. Sternheimer, T. Tate, S. Watamura, Kluwer Acad. Publ., Dordrecht, 2001, 245–306, arXiv: math.QA/9912017 | DOI | MR | Zbl

[17] Dubois-Violette M., Michor P. W., “Dérivations et calcul différentiel non commutatif. II”, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 927–931, arXiv: hep-th/9406166 | MR | Zbl

[18] Eisenbud D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[19] Filippini R. J., The symplectic geometry of the theorems of Borel–Weil and Peter–Weyl, Ph.D. Thesis, University of California, Berkeley, 1995 | MR

[20] Fiore G., Franco D., Weber T., Twisted quadrics and algebraic submanifolds in $\mathbb R^n$, arXiv: 2005.03509 | MR

[21] Fiore G., Weber T., Twisted submanifolds of $\mathbb R^n$, arXiv: 2003.03854

[22] Gloessner P., Star product reduction for coisotropic submanifolds of codimension 1, arXiv: math.QA/9805049

[23] Gracia-Bondía J. M., Várilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston, Inc., Boston, MA, 2001 | DOI | MR | Zbl

[24] Greub W., Halperin S., Vanstone R., Connections, curvature, and cohomology, v. I, Pure and Applied Mathematics, 47, De Rham cohomology of manifolds and vector bundles, Academic Press, New York–London, 1972 | MR | Zbl

[25] Gutt S., Rawnsley J., “Equivalence of star products on a symplectic manifold; an introduction to Deligne's Čech cohomology classes”, J. Geom. Phys., 29 (1999), 347–392 | DOI | MR | Zbl

[26] Iglesias-Zemmour P., Diffeology, Mathematical Surveys and Monographs, 185, Amer. Math. Soc., Providence, RI, 2013 | DOI | MR | Zbl

[27] Kadison R. V., “Derivations of operator algebras”, Ann. of Math., 83 (1966), 280–293 | DOI | MR | Zbl

[28] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | DOI | MR | Zbl

[29] Lê H. V., Oh Y. G., Tortorella A. G., Vitagliano L., “Deformations of coisotropic submanifolds in Jacobi manifolds”, J. Symplectic Geom., 16 (2018), 1051–1116 | DOI | MR | Zbl

[30] Lee J. M., Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, 2nd ed., Springer, New York, 2013 | DOI | MR | Zbl

[31] Majid S., Ruegg H., “Bicrossproduct structure of $\kappa$-Poincaré group and non-commutative geometry”, Phys. Lett. B, 334 (1994), 348–354, arXiv: hep-th/9405107 | DOI | MR | Zbl

[32] Masson T., “Submanifolds and quotient manifolds in noncommutative geometry”, J. Math. Phys., 37 (1996), 2484–2497, arXiv: q-alg/9507030 | DOI | MR | Zbl

[33] Michor P. W., Vanžura J., “Characterizing algebras of $C^\infty$-functions on manifolds”, Comment. Math. Univ. Carolin., 37 (1996), 519–521, arXiv: math.GT/9404228 | MR | Zbl

[34] Moerdijk I., Reyes G. E., Models for smooth infinitesimal analysis, Springer-Verlag, New York, 1991 | DOI | MR | Zbl

[35] Pedersen G. K., “Lifting derivations from quotients of separable $C^*$-algebras”, Proc. Nat. Acad. Sci. USA, 73 (1976), 1414–1415 | DOI | MR | Zbl

[36] Sakai S., “Derivations of $W^{\ast} $-algebras”, Ann. of Math., 83 (1966), 273–279 | DOI | MR | Zbl

[37] Sharygin G., “Deformation quantization and the action of Poisson vector fields”, Lobachevskii J. Math., 38 (2017), 1093–1107 | DOI | MR | Zbl

[38] van Suijlekom W. D., Noncommutative geometry and particle physics, Mathematical Physics Studies, Springer, Dordrecht, 2015 | DOI | MR | Zbl

[39] Weber T., “Braided Cartan calculi and submanifold algebras”, J. Geom. Phys., 150 (2020), 103612, 24 pp. | DOI | MR | Zbl