Mots-clés : quiver mutation
@article{SIGMA_2020_16_a48,
author = {Eric Bucher and John Machacek},
title = {Reddening {Sequences} for {Banff} {Quivers} and the {Class} $\mathcal{P}$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a48/}
}
Eric Bucher; John Machacek. Reddening Sequences for Banff Quivers and the Class $\mathcal{P}$. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a48/
[1] Alim M., Cecotti S., Córdova C., Espahbodi S., Rastogi A., Vafa C., “BPS quivers and spectra of complete $\mathcal{N}=2$ quantum field theories”, Comm. Math. Phys., 323 (2013), 1185–1227, arXiv: 1109.4941 | DOI | MR | Zbl
[2] Berenstein A., Fomin S., Zelevinsky A., “Cluster algebras. III Upper bounds and double Bruhat cells”, Duke Math. J., 126 (2005), 1–52, arXiv: math.RT/0305434 | DOI | MR | Zbl
[3] Brüstle T., Dupont G., Pérotin M., “On maximal green sequences”, Int. Math. Res. Not., 2014 (2014), 4547–4586, arXiv: 1205.2050 | DOI | MR | Zbl
[4] Bucher E., “Maximal green sequences for cluster algebras associated to orientable surfaces with empty boundary”, Arnold Math. J., 2 (2016), 487–510, arXiv: 1412.3713 | DOI | MR | Zbl
[5] Bucher E., Machacek J., Shapiro M., “Upper cluster algebras and choice of ground ring”, Sci. China Math., 62 (2019), 1257–1266, arXiv: 1802.04835 | DOI | MR | Zbl
[6] Bucher E., Mills M. R., “Maximal green sequences for cluster algebras associated with the $n$-torus with arbitrary punctures”, J. Algebraic Combin., 47 (2018), 345–356, arXiv: 1503.06207 | DOI | MR | Zbl
[7] Canakci I., Lee K., Schiffler R., “On cluster algebras from unpunctured surfaces with one marked point”, Proc. Amer. Math. Soc. Ser. B, 2 (2015), 35–49, arXiv: 1407.5060 | DOI | MR | Zbl
[8] Cao P., Li F., “Uniform column sign-coherence and the existence of maximal green sequences”, J. Algebraic Combin., 50 (2019), 403–417, arXiv: 1712.00973 | DOI | MR | Zbl
[9] Derksen H., Weyman J., Zelevinsky A., “Quivers with potentials and their representations II: applications to cluster algebras”, J. Amer. Math. Soc., 23 (2010), 749–790 | DOI | MR | Zbl
[10] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl
[11] Ford N., Serhiyenko K., “Green-to-red sequences for positroids”, J. Combin. Theory Ser. A, 159 (2018), 164–182, arXiv: 1610.01695 | DOI | MR | Zbl
[12] Garver A., Musiker G., “On maximal green sequences for type $\mathbb A$ quivers”, J. Algebraic Combin., 45 (2017), 553–599, arXiv: 1403.6149 | DOI | MR | Zbl
[13] Goncharov A., Shen L., “Donaldson–Thomas transformations of moduli spaces of G-local systems”, Adv. Math., 327 (2018), 225–348, arXiv: 1602.06479 | DOI | MR | Zbl
[14] Goodearl K. R., Yakimov M. T., Cluster algebra structures on Poisson nilpotent algebras, arXiv: 1801.01963 | MR
[15] Gross M., Hacking P., Keel S., Kontsevich M., “Canonical bases for cluster algebras”, J. Amer. Math. Soc., 31 (2018), 497–608, arXiv: 1411.1394 | DOI | MR | Zbl
[16] Keller B., “On cluster theory and quantum dilogarithm identities, in Representations of Algebras and Related Topics”, EMS Ser. Congr. Rep., 2011, 85–116, Eur. Math. Soc., Zürich, arXiv: 1102.4148 | DOI | MR
[17] Keller B., “Cluster algebras and derived categories”, Derived Categories in Algebraic Geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, 123–183, arXiv: 1202.4161 | DOI | MR | Zbl
[18] Kontsevich M., Soibelman Y., Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, arXiv: 0811.2435 | MR
[19] Ladkani S., On cluster algebras from once punctured closed surfaces, arXiv: 1310.4454
[20] Lam T., Speyer D. E., Cohomology of cluster varieties. I. Locally acyclic case, arXiv: 1604.06843
[21] Lawson J. W., Mills M. R., “Properties of minimal mutation-infinite quivers”, J. Combin. Theory Ser. A, 155 (2018), 122–156, arXiv: 1610.08333 | DOI | MR | Zbl
[22] Mills M. R., “Maximal green sequences for quivers of finite mutation type”, Adv. Math., 319 (2017), 182–210, arXiv: 1606.03799 | DOI | MR | Zbl
[23] Mills M. R., On the relationship between green-to-red sequences, local-acyclicity, and upper cluster algebra, arXiv: 1804.00479
[24] Muller G., “Locally acyclic cluster algebras”, Adv. Math., 233 (2013), 207–247, arXiv: 1111.4468 | DOI | MR | Zbl
[25] Muller G., “${\mathcal A}={\mathcal U}$ for locally acyclic cluster algebras”, SIGMA, 10 (2014), 094, 8 pp., arXiv: 1308.1141 | DOI | MR | Zbl
[26] Muller G., “The existence of a maximal green sequence is not invariant under quiver mutation”, Electron. J. Combin., 23 (2016), 2.47, 23 pp., arXiv: 1503.04675 | DOI | MR | Zbl
[27] Muller G., Speyer D. E., “Cluster algebras of Grassmannians are locally acyclic”, Proc. Amer. Math. Soc., 144 (2016), 3267–3281, arXiv: 1401.5137 | DOI | MR | Zbl
[28] Postnikov A., Total positivity, Grassmannians, and networks, arXiv: math.CO/0609764
[29] Seven A. I., “Maximal green sequences of skew-symmetrizable $3\times3$ matrices”, Linear Algebra Appl., 440 (2014), 125–130, arXiv: 1207.6265 | DOI | MR | Zbl