Triply Periodic Monopoles and Difference Modules on Elliptic Curves
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We explain the correspondences between twisted monopoles with Dirac type singularity and polystable twisted mini-holomorphic bundles with Dirac type singularity on a 3-dimensional torus. We also explain that they are equivalent to polystable parabolic twisted difference modules on elliptic curves.
Keywords: twisted monopoles, twisted difference modules, twisted mini-holomorphic bundles, Kobayashi–Hitchin correspondence.
@article{SIGMA_2020_16_a47,
     author = {Takuro Mochizuki},
     title = {Triply {Periodic} {Monopoles} and {Difference} {Modules} on {Elliptic} {Curves}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a47/}
}
TY  - JOUR
AU  - Takuro Mochizuki
TI  - Triply Periodic Monopoles and Difference Modules on Elliptic Curves
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a47/
LA  - en
ID  - SIGMA_2020_16_a47
ER  - 
%0 Journal Article
%A Takuro Mochizuki
%T Triply Periodic Monopoles and Difference Modules on Elliptic Curves
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a47/
%G en
%F SIGMA_2020_16_a47
Takuro Mochizuki. Triply Periodic Monopoles and Difference Modules on Elliptic Curves. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a47/

[1] Charbonneau B., Hurtubise J., “Singular Hermitian–Einstein monopoles on the product of a circle and a Riemann surface”, Int. Math. Res. Not., 2011 (2011), 175–216, arXiv: 0812.0221 | DOI | MR | Zbl

[2] Kontsevich M., Soibelman Y., Riemann–Hilbert correspondence in dimension one, Fukaya categories and periodic monopoles, Preprint

[3] Kronheimer P. B., Monopoles and Taub-NUT metrics, Master Thesis, Oxford, 1986 | Zbl

[4] Mochizuki T., Periodic monopoles and difference modules, arXiv: 1712.08981 | MR

[5] Mochizuki T., Doubly-periodic monopoles and $q$-difference modules, arXiv: 1902.08298 | MR

[6] Mochizuki T., Yoshino M., “Some characterizations of Dirac type singularity of monopoles”, Comm. Math. Phys., 356 (2017), 613–625, arXiv: 1702.06268 | DOI | MR | Zbl

[7] Simpson C. T., Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization, J. Amer. Math. Soc., 1 (1988), 867–918 | DOI | MR | Zbl

[8] Yoshino M., A Kobayashi–Hitchin correspondence between Dirac-type singular mini-holomorphic bundles and HE-monopoles, arXiv: 1902.09995