@article{SIGMA_2020_16_a47,
author = {Takuro Mochizuki},
title = {Triply {Periodic} {Monopoles} and {Difference} {Modules} on {Elliptic} {Curves}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a47/}
}
Takuro Mochizuki. Triply Periodic Monopoles and Difference Modules on Elliptic Curves. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a47/
[1] Charbonneau B., Hurtubise J., “Singular Hermitian–Einstein monopoles on the product of a circle and a Riemann surface”, Int. Math. Res. Not., 2011 (2011), 175–216, arXiv: 0812.0221 | DOI | MR | Zbl
[2] Kontsevich M., Soibelman Y., Riemann–Hilbert correspondence in dimension one, Fukaya categories and periodic monopoles, Preprint
[3] Kronheimer P. B., Monopoles and Taub-NUT metrics, Master Thesis, Oxford, 1986 | Zbl
[4] Mochizuki T., Periodic monopoles and difference modules, arXiv: 1712.08981 | MR
[5] Mochizuki T., Doubly-periodic monopoles and $q$-difference modules, arXiv: 1902.08298 | MR
[6] Mochizuki T., Yoshino M., “Some characterizations of Dirac type singularity of monopoles”, Comm. Math. Phys., 356 (2017), 613–625, arXiv: 1702.06268 | DOI | MR | Zbl
[7] Simpson C. T., Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization, J. Amer. Math. Soc., 1 (1988), 867–918 | DOI | MR | Zbl
[8] Yoshino M., A Kobayashi–Hitchin correspondence between Dirac-type singular mini-holomorphic bundles and HE-monopoles, arXiv: 1902.09995