Routh Reduction of Palatini Gravity in Vacuum
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An interpretation of Einstein–Hilbert gravity equations as Lagrangian reduction of Palatini gravity is made. The main technique involved in this task consists in representing the equations of motion as a set of differential forms on a suitable bundle. In this setting Einstein–Hilbert gravity can be considered as a kind of Routh reduction of the underlying field theory for Palatini gravity. As a byproduct of this approach, a novel set of conditions for the existence of a vielbein for a given metric is found.
Keywords: symmetry reduction, Palatini gravity, frame bundle.
@article{SIGMA_2020_16_a45,
     author = {Santiago Capriotti},
     title = {Routh {Reduction} of {Palatini} {Gravity} in {Vacuum}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a45/}
}
TY  - JOUR
AU  - Santiago Capriotti
TI  - Routh Reduction of Palatini Gravity in Vacuum
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a45/
LA  - en
ID  - SIGMA_2020_16_a45
ER  - 
%0 Journal Article
%A Santiago Capriotti
%T Routh Reduction of Palatini Gravity in Vacuum
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a45/
%G en
%F SIGMA_2020_16_a45
Santiago Capriotti. Routh Reduction of Palatini Gravity in Vacuum. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a45/

[1] Arnowitt R., Deser S., Misner C. W., “The dynamics of general relativity”, Gen. Relativity Gravitation, 40 (2004), 1997–2027, arXiv: gr-qc/0405109 | DOI | MR

[2] Barbero-Liñán M., Echeverría-Enríquez A., Martín de Diego D., Muñoz Lecanda M. C., Román-Roy N., “Skinner–Rusk unified formalism for optimal control systems and applications”, J. Phys. A: Math. Gen., 40 (2007), 12071–12093, arXiv: 0705.2178 | DOI | MR | Zbl

[3] Capriotti S., “Differential geometry, Palatini gravity and reduction”, J. Math. Phys., 55 (2014), 012902, 29 pp., arXiv: 1209.3596 | DOI | MR | Zbl

[4] Capriotti S., “Routh reduction and Cartan mechanics”, J. Geom. Phys., 114 (2017), 23–64, arXiv: 1606.02630 | DOI | MR | Zbl

[5] Capriotti S., “Unified formalism for Palatini gravity”, Int. J. Geom. Methods Mod. Phys., 15 (2018), 1850044, 33 pp., arXiv: 1707.06057 | DOI | MR | Zbl

[6] Capriotti S., García-Toraño Andrés E., “Routh reduction for first-order Lagrangian field theories”, Lett. Math. Phys., 109 (2019), 1343–1376, arXiv: 1909.10088 | DOI | MR | Zbl

[7] Capriotti S., Gaset J., Román-Roy N., Salomone L., Griffiths variational multisymplectic formulation for Lovelock gravity, arXiv: 1911.07278 | MR

[8] Castrillón López M., García P.L., Rodrigo C., “Euler–Poincaré reduction in principal bundles by a subgroup of the structure group”, J. Geom. Phys., 74 (2013), 352–369 | DOI | MR | Zbl

[9] Castrillón López M., Muñoz Masqué J., “The geometry of the bundle of connections”, Math. Z., 236 (2001), 797–811 | DOI | MR | Zbl

[10] Castrillón López M., Muñoz Masqué J., Rosado María E., “First-order equivalent to Einstein–Hilbert Lagrangian”, J. Math. Phys., 55 (2014), 082501, 9 pp., arXiv: 1306.1123 | DOI | MR | Zbl

[11] Castrillón López M., Ratiu T. S., “Reduction in principal bundles: covariant Lagrange–Poincaré equations”, Comm. Math. Phys., 236 (2003), 223–250 | DOI | MR | Zbl

[12] Castrillón López M., Ratiu T. S., Shkoller S., “Reduction in principal fiber bundles: covariant Euler–Poincaré equations”, Proc. Amer. Math. Soc., 128 (2000), 2155–2164, arXiv: math.DG/9908102 | DOI | MR | Zbl

[13] Cattaneo A. S., Schiavina M., “The reduced phase space of Palatini–Cartan–Holst theory”, Ann. Henri Poincaré, 20 (2019), 445–480, arXiv: 1707.05351 | DOI | MR | Zbl

[14] Crampin M., Mestdag T., “Routh's procedure for non-abelian symmetry groups”, J. Math. Phys., 49 (2008), 032901, 28 pp., arXiv: 0802.0528 | DOI | MR | Zbl

[15] Dadhich N., Pons J. M., “On the equivalence of the Einstein–Hilbert and the Einstein–Palatini formulations of general relativity for an arbitrary connection”, Gen. Relativity Gravitation, 44 (2012), 2337–2352, arXiv: 1010.0869 | DOI | MR | Zbl

[16] Echeverría-Enríquez A., López C., Marín-Solano J., Muñoz Lecanda M. C., Román-Roy N., “Lagrangian–Hamiltonian unified formalism for field theory”, J. Math. Phys., 45 (2004), 360–380, arXiv: math-ph/0212002 | DOI | MR | Zbl

[17] Ellis D. C.P., Gay-Balmaz F., Holm D. D., Ratiu T. S., “Lagrange–{P}oincaré field equations”, J. Geom. Phys., 61 (2011), 2120–2146, arXiv: 0910.0874 | DOI | MR | Zbl

[18] García-Toraño Andrés E., Mestdag T., Yoshimura H., “Implicit Lagrange–Routh equations and Dirac reduction”, J. Geom. Phys., 104 (2016), 291–304, arXiv: 1509.01946 | DOI | MR | Zbl

[19] Gaset J., Román-Roy N., “Multisymplectic unified formalism for Einstein–Hilbert gravity”, J. Math. Phys., 59 (2018), 032502, 39 pp., arXiv: 1705.00569 | DOI | MR | Zbl

[20] Gotay M. J., “An exterior differential systems approach to the Cartan form”, Symplectic Geometry and Mathematical Physics (Aix-en-Provence, 1990), Progr. Math., 99, Birkhäuser Boston, Boston, MA, 1991, 160–188 | MR

[21] Gotay M. J., Isenberg J., Marsden J. E., Montgomery R., Momentum Maps And Classical Relativistic Fields. Part I: Covariant field theory, arXiv: physics/9801019

[22] Griffiths P. A., Exterior differential systems and the calculus of variations, Progress in Mathematics, 25, Birkhäuser, Boston, Mass., 1983 | DOI | MR | Zbl

[23] Hehl F. W., McCrea J. D., Mielke E. W., Ne'eman Y., “Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance”, Phys. Rep., 258 (1995), 1–171, arXiv: gr-qc/9402012 | DOI | MR

[24] Hehl F. W., von der Heyde P., Kerlick G. D., Nester J. M., “General relativity with spin and torsion: foundations and prospect”, Rev. Modern Phys., 48 (1976), 393–416 | DOI | MR | Zbl

[25] Higham N. J., “$J$-orthogonal matrices: properties and generation”, SIAM Rev., 45 (2003), 504–519 | DOI | MR | Zbl

[26] Hsu L., “Calculus of variations via the Griffiths formalism”, J. Differential Geom., 36 (1992), 551–589 | DOI | MR | Zbl

[27] Ibort A., Spivak A., On a covariant Hamiltonian description of Palatini's gravity on manifolds with boundary, arXiv: 1605.03492 | MR

[28] Kharlamov M. P., “Characteristic class of a bundle and the existence of a global Routh function”, Funct. Anal. Appl., 11 (1977), 80–81 | DOI | MR | Zbl

[29] Kobayashi S., Nomizu K., Foundations of differential geometry, v. I, Interscience Publishers, New York–London, 1963 | MR | Zbl

[30] Krupka D., Introduction to global variational geometry, Atlantis Studies in Variational Geometry, 1, Atlantis Press, Paris, 2015 | DOI | MR | Zbl

[31] Langerock B., López M. C., “Routh reduction for singular Lagrangians”, Int. J. Geom. Methods Mod. Phys., 7 (2010), 1451–1489, arXiv: 1007.0325 | DOI | MR | Zbl

[32] Marsden J. E., Ratiu T. S., Scheurle J., “Reduction theory and the Lagrange–Routh equations”, J. Math. Phys., 41 (2000), 3379–3429 | DOI | MR | Zbl

[33] Nawarajan D., Visser M., “Global properties of physically interesting Lorentzian spacetimes”, Internat. J. Modern Phys. D, 25 (2016), 1650106, 15 pp., arXiv: 1601.03355 | DOI | MR | Zbl

[34] Pars L. A., A treatise on analytical dynamics, John Wiley Sons, Inc., New York, 1965 | MR

[35] Peldán P., “Actions for gravity, with generalizations: a review”, Classical Quantum Gravity, 11 (1994), 1087–1132, arXiv: gr-qc/9305011 | DOI | MR

[36] Prieto-Martínez P. D., Román-Roy N., “A new multisymplectic unified formalism for second order classical field theories”, J. Geom. Mech., 7 (2015), 203–253, arXiv: 1402.4087 | DOI | MR | Zbl

[37] Romano J. D., “Geometrodynamics vs. connection dynamics”, Gen. Relativity Gravitation, 25 (1993), 759–854, arXiv: gr-qc/9303032 | DOI | MR | Zbl

[38] Sardanashvily G., “Classical gauge gravitation theory”, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1869–1895, arXiv: 1110.1176 | DOI | MR | Zbl

[39] Saunders D. J., The geometry of jet bundles, London Mathematical Society Lecture Note Series, 142, Cambridge University Press, Cambridge, 1989 | DOI | MR | Zbl

[40] Tsamparlis M., “On the Palatini method of variation”, J. Math. Phys., 19 (1978), 555–557 | DOI | MR | Zbl

[41] Vey D., “Multisymplectic formulation of vielbein gravity: I De Donder–Weyl formulation, Hamiltonian $(n-1)$-forms”, Classical Quantum Gravity, 32 (2015), 095005, 50 pp., arXiv: 1404.3546 | DOI | MR | Zbl