@article{SIGMA_2020_16_a45,
author = {Santiago Capriotti},
title = {Routh {Reduction} of {Palatini} {Gravity} in {Vacuum}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a45/}
}
Santiago Capriotti. Routh Reduction of Palatini Gravity in Vacuum. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a45/
[1] Arnowitt R., Deser S., Misner C. W., “The dynamics of general relativity”, Gen. Relativity Gravitation, 40 (2004), 1997–2027, arXiv: gr-qc/0405109 | DOI | MR
[2] Barbero-Liñán M., Echeverría-Enríquez A., Martín de Diego D., Muñoz Lecanda M. C., Román-Roy N., “Skinner–Rusk unified formalism for optimal control systems and applications”, J. Phys. A: Math. Gen., 40 (2007), 12071–12093, arXiv: 0705.2178 | DOI | MR | Zbl
[3] Capriotti S., “Differential geometry, Palatini gravity and reduction”, J. Math. Phys., 55 (2014), 012902, 29 pp., arXiv: 1209.3596 | DOI | MR | Zbl
[4] Capriotti S., “Routh reduction and Cartan mechanics”, J. Geom. Phys., 114 (2017), 23–64, arXiv: 1606.02630 | DOI | MR | Zbl
[5] Capriotti S., “Unified formalism for Palatini gravity”, Int. J. Geom. Methods Mod. Phys., 15 (2018), 1850044, 33 pp., arXiv: 1707.06057 | DOI | MR | Zbl
[6] Capriotti S., García-Toraño Andrés E., “Routh reduction for first-order Lagrangian field theories”, Lett. Math. Phys., 109 (2019), 1343–1376, arXiv: 1909.10088 | DOI | MR | Zbl
[7] Capriotti S., Gaset J., Román-Roy N., Salomone L., Griffiths variational multisymplectic formulation for Lovelock gravity, arXiv: 1911.07278 | MR
[8] Castrillón López M., García P.L., Rodrigo C., “Euler–Poincaré reduction in principal bundles by a subgroup of the structure group”, J. Geom. Phys., 74 (2013), 352–369 | DOI | MR | Zbl
[9] Castrillón López M., Muñoz Masqué J., “The geometry of the bundle of connections”, Math. Z., 236 (2001), 797–811 | DOI | MR | Zbl
[10] Castrillón López M., Muñoz Masqué J., Rosado María E., “First-order equivalent to Einstein–Hilbert Lagrangian”, J. Math. Phys., 55 (2014), 082501, 9 pp., arXiv: 1306.1123 | DOI | MR | Zbl
[11] Castrillón López M., Ratiu T. S., “Reduction in principal bundles: covariant Lagrange–Poincaré equations”, Comm. Math. Phys., 236 (2003), 223–250 | DOI | MR | Zbl
[12] Castrillón López M., Ratiu T. S., Shkoller S., “Reduction in principal fiber bundles: covariant Euler–Poincaré equations”, Proc. Amer. Math. Soc., 128 (2000), 2155–2164, arXiv: math.DG/9908102 | DOI | MR | Zbl
[13] Cattaneo A. S., Schiavina M., “The reduced phase space of Palatini–Cartan–Holst theory”, Ann. Henri Poincaré, 20 (2019), 445–480, arXiv: 1707.05351 | DOI | MR | Zbl
[14] Crampin M., Mestdag T., “Routh's procedure for non-abelian symmetry groups”, J. Math. Phys., 49 (2008), 032901, 28 pp., arXiv: 0802.0528 | DOI | MR | Zbl
[15] Dadhich N., Pons J. M., “On the equivalence of the Einstein–Hilbert and the Einstein–Palatini formulations of general relativity for an arbitrary connection”, Gen. Relativity Gravitation, 44 (2012), 2337–2352, arXiv: 1010.0869 | DOI | MR | Zbl
[16] Echeverría-Enríquez A., López C., Marín-Solano J., Muñoz Lecanda M. C., Román-Roy N., “Lagrangian–Hamiltonian unified formalism for field theory”, J. Math. Phys., 45 (2004), 360–380, arXiv: math-ph/0212002 | DOI | MR | Zbl
[17] Ellis D. C.P., Gay-Balmaz F., Holm D. D., Ratiu T. S., “Lagrange–{P}oincaré field equations”, J. Geom. Phys., 61 (2011), 2120–2146, arXiv: 0910.0874 | DOI | MR | Zbl
[18] García-Toraño Andrés E., Mestdag T., Yoshimura H., “Implicit Lagrange–Routh equations and Dirac reduction”, J. Geom. Phys., 104 (2016), 291–304, arXiv: 1509.01946 | DOI | MR | Zbl
[19] Gaset J., Román-Roy N., “Multisymplectic unified formalism for Einstein–Hilbert gravity”, J. Math. Phys., 59 (2018), 032502, 39 pp., arXiv: 1705.00569 | DOI | MR | Zbl
[20] Gotay M. J., “An exterior differential systems approach to the Cartan form”, Symplectic Geometry and Mathematical Physics (Aix-en-Provence, 1990), Progr. Math., 99, Birkhäuser Boston, Boston, MA, 1991, 160–188 | MR
[21] Gotay M. J., Isenberg J., Marsden J. E., Montgomery R., Momentum Maps And Classical Relativistic Fields. Part I: Covariant field theory, arXiv: physics/9801019
[22] Griffiths P. A., Exterior differential systems and the calculus of variations, Progress in Mathematics, 25, Birkhäuser, Boston, Mass., 1983 | DOI | MR | Zbl
[23] Hehl F. W., McCrea J. D., Mielke E. W., Ne'eman Y., “Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance”, Phys. Rep., 258 (1995), 1–171, arXiv: gr-qc/9402012 | DOI | MR
[24] Hehl F. W., von der Heyde P., Kerlick G. D., Nester J. M., “General relativity with spin and torsion: foundations and prospect”, Rev. Modern Phys., 48 (1976), 393–416 | DOI | MR | Zbl
[25] Higham N. J., “$J$-orthogonal matrices: properties and generation”, SIAM Rev., 45 (2003), 504–519 | DOI | MR | Zbl
[26] Hsu L., “Calculus of variations via the Griffiths formalism”, J. Differential Geom., 36 (1992), 551–589 | DOI | MR | Zbl
[27] Ibort A., Spivak A., On a covariant Hamiltonian description of Palatini's gravity on manifolds with boundary, arXiv: 1605.03492 | MR
[28] Kharlamov M. P., “Characteristic class of a bundle and the existence of a global Routh function”, Funct. Anal. Appl., 11 (1977), 80–81 | DOI | MR | Zbl
[29] Kobayashi S., Nomizu K., Foundations of differential geometry, v. I, Interscience Publishers, New York–London, 1963 | MR | Zbl
[30] Krupka D., Introduction to global variational geometry, Atlantis Studies in Variational Geometry, 1, Atlantis Press, Paris, 2015 | DOI | MR | Zbl
[31] Langerock B., López M. C., “Routh reduction for singular Lagrangians”, Int. J. Geom. Methods Mod. Phys., 7 (2010), 1451–1489, arXiv: 1007.0325 | DOI | MR | Zbl
[32] Marsden J. E., Ratiu T. S., Scheurle J., “Reduction theory and the Lagrange–Routh equations”, J. Math. Phys., 41 (2000), 3379–3429 | DOI | MR | Zbl
[33] Nawarajan D., Visser M., “Global properties of physically interesting Lorentzian spacetimes”, Internat. J. Modern Phys. D, 25 (2016), 1650106, 15 pp., arXiv: 1601.03355 | DOI | MR | Zbl
[34] Pars L. A., A treatise on analytical dynamics, John Wiley Sons, Inc., New York, 1965 | MR
[35] Peldán P., “Actions for gravity, with generalizations: a review”, Classical Quantum Gravity, 11 (1994), 1087–1132, arXiv: gr-qc/9305011 | DOI | MR
[36] Prieto-Martínez P. D., Román-Roy N., “A new multisymplectic unified formalism for second order classical field theories”, J. Geom. Mech., 7 (2015), 203–253, arXiv: 1402.4087 | DOI | MR | Zbl
[37] Romano J. D., “Geometrodynamics vs. connection dynamics”, Gen. Relativity Gravitation, 25 (1993), 759–854, arXiv: gr-qc/9303032 | DOI | MR | Zbl
[38] Sardanashvily G., “Classical gauge gravitation theory”, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1869–1895, arXiv: 1110.1176 | DOI | MR | Zbl
[39] Saunders D. J., The geometry of jet bundles, London Mathematical Society Lecture Note Series, 142, Cambridge University Press, Cambridge, 1989 | DOI | MR | Zbl
[40] Tsamparlis M., “On the Palatini method of variation”, J. Math. Phys., 19 (1978), 555–557 | DOI | MR | Zbl
[41] Vey D., “Multisymplectic formulation of vielbein gravity: I De Donder–Weyl formulation, Hamiltonian $(n-1)$-forms”, Classical Quantum Gravity, 32 (2015), 095005, 50 pp., arXiv: 1404.3546 | DOI | MR | Zbl