@article{SIGMA_2020_16_a44,
author = {Lisa Carbone and Alex J. Feingold and Walter Freyn},
title = {A {Lightcone} {Embedding} of the {Twin} {Building} of a {Hyperbolic} {Kac{\textendash}Moody} {Group}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a44/}
}
TY - JOUR AU - Lisa Carbone AU - Alex J. Feingold AU - Walter Freyn TI - A Lightcone Embedding of the Twin Building of a Hyperbolic Kac–Moody Group JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a44/ LA - en ID - SIGMA_2020_16_a44 ER -
%0 Journal Article %A Lisa Carbone %A Alex J. Feingold %A Walter Freyn %T A Lightcone Embedding of the Twin Building of a Hyperbolic Kac–Moody Group %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a44/ %G en %F SIGMA_2020_16_a44
Lisa Carbone; Alex J. Feingold; Walter Freyn. A Lightcone Embedding of the Twin Building of a Hyperbolic Kac–Moody Group. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a44/
[1] Abramenko P., Brown K. S., Buildings. Theory and applications, Graduate Texts in Mathematics, 248, Springer, New York, 2008 | DOI | MR | Zbl
[2] Andersen K. K.S., Carbone L., Penta D., “Kac–Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields”, J. Comb. Number Theory, 2 (2010), 245–278 | MR | Zbl
[3] Back-Valente V., Bardy-Panse N., Ben Messaoud H., Rousseau G., “Formes presque-déployées des algèbres de Kac–Moody: classification et racines relatives”, J. Algebra, 171 (1995), 43–96 | DOI | MR | Zbl
[4] Berman S., “Real forms of universal Kac–Moody Lie algebras”, Algebras Groups Geom., 2 (1985), 10–25 | MR | Zbl
[5] Borcherds R. E., “Vertex algebras, Kac–Moody algebras, and the Monster”, Proc. Nat. Acad. Sci. USA, 83 (1986), 3068–3071 | DOI | MR
[6] Caprace P. E., “Abstract” homomorphisms of split Kac–Moody groups, Mem. Amer. Math. Soc., 198, 2009, xvi+84 pp. | DOI | MR
[7] Carbone L., Garland H., “Existence of lattices in Kac–Moody groups over finite fields”, Commun. Contemp. Math., 5 (2003), 813–867 | DOI | MR | Zbl
[8] Carbone L., Kownacki M., Murray S. H., Srinivasan S., “Commutator relations and structure constants for rank 2 Kac–Moody algebras”, J. Algebra (to appear) , arXiv: 1804.02308 | MR
[9] Chevalley C., “Sur certains groupes simples”, Tohoku Math. J., 7 (1955), 14–66 | DOI | MR | Zbl
[10] Dadok J., “Polar coordinates induced by actions of compact Lie groups”, Trans. Amer. Math. Soc., 288 (1985), 125–137 | DOI | MR | Zbl
[11] Damour T., Henneaux M., Nicolai H., “$E_{10}$ and a small tension expansion of M theory”, Phys. Rev. Lett., 89 (2002), 221601, 4 pp., arXiv: hep-th/0207267 | DOI | MR | Zbl
[12] Damour T., Hillmann C., “Fermionic Kac–Moody billiards and supergravity”, J. High Energy Phys., 2009:8 (2009), 100, 55 pp., arXiv: 0906.3116 | DOI | MR
[13] Damour T., Kleinschmidt A., Nicolai H., “Sugawara-type constraints in hyperbolic coset models”, Comm. Math. Phys., 302 (2011), 755–788, arXiv: 0912.3491 | DOI | MR | Zbl
[14] Damour T., Spindel P., “Quantum supersymmetric cosmology and its hidden Kac–Moody structure”, Classical Quantum Gravity, 30 (2013), 162001, 7 pp., arXiv: 1304.6381 | DOI | MR | Zbl
[15] De Medts T., Gramlich R., Horn M., “Iwasawa decompositions of split Kac–Moody groups”, J. Lie Theory, 19 (2009), 311–337 | MR | Zbl
[16] Eberlein P. B., Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996 | MR | Zbl
[17] Feingold A. J., “A hyperbolic GCM Lie algebra and the Fibonacci numbers”, Proc. Amer. Math. Soc., 80 (1980), 379–385 | DOI | MR | Zbl
[18] Feingold A. J., Frenkel I. B., “A hyperbolic Kac–Moody algebra and the theory of Siegel modular forms of genus $2$”, Math. Ann., 263 (1983), 87–144 | DOI | MR | Zbl
[19] Freyn W., Kac–Moody symmetric spaces and universal twin buildings, Ph.D. Thesis, Universität Augsburg, 2009
[20] Freyn W., Functional analytic methods for cities, unpublished, 2011
[21] Freyn W., “Kac–Moody geometry”, Global Differential Geometry, Springer Proc. Math., 17, Springer, Heidelberg, 2012, 55–92, arXiv: 1003.4435 | DOI | MR | Zbl
[22] Freyn W., “Kac–Moody groups, infinite dimensional differential geometry and cities”, Asian J. Math., 16 (2012), 607–636 | DOI | MR | Zbl
[23] Freyn W., “Tame Fréchet structures for affine Kac–Moody groups”, Asian J. Math., 18 (2014), 885–928 | DOI | MR | Zbl
[24] Freyn W., “Orthogonal symmetric affine Kac–Moody algebras”, Trans. Amer. Math. Soc., 367 (2015), 7133–7159, arXiv: 1305.3137 | DOI | MR | Zbl
[25] Freyn W., “Tame Fréchet submanifolds of co-Banach type”, Forum Math., 27 (2015), 2467–2490, arXiv: 1305.3145 | DOI | MR | Zbl
[26] Freyn W., Hartnick T., Horn M., Köhl R., “Kac–Moody symmetric spaces”, Münster J. Math., 13 (2020), 1–114, arXiv: 1702.08426 | DOI | MR | Zbl
[27] Gabber O., Kac V. G., “On defining relations of certain infinite-dimensional Lie algebras”, Bull. Amer. Math. Soc. (N.S.), 5 (1981), 185–189 | DOI | MR | Zbl
[28] Groß C., “$s$-representations for involutions on affine Kac–Moody algebras are polar”, Manuscripta Math., 103 (2000), 339–350 | DOI | MR | Zbl
[29] Hainke G., Köhl R., Levy P., “Generalized spin representations”, Münster J. Math., 8 (2015), 181–210, arXiv: 1110.5576 | DOI | MR | Zbl
[30] Heintze E., “Toward symmetric spaces of affine Kac–Moody type”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 881–898 | DOI | MR | Zbl
[31] Heintze E., Palais R. S., Terng C. L., Thorbergsson G., “Hyperpolar actions on symmetric spaces”, Geometry, Topology, Physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, 214–245 | MR | Zbl
[32] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl
[33] Horn M., Involutions of Kac–Moody groups, Technische Universität Darmstadt, 2009
[34] Julia B., “Kac–Moody symmetry of gravitation and supergravity theories”, Applications of Group Theory in Physics and Mathematical Physics (Chicago, 1982), Lectures in Appl. Math., 21, Amer. Math. Soc., Providence, RI, 1985, 355–373 | MR
[35] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl
[36] Kac V. G., Moody R. V., Wakimoto M., “On $E_{10}$”, Differential Geometrical Methods in Theoretical Physics (Como, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 250, Kluwer Acad. Publ., Dordrecht, 1988, 109–128 | MR
[37] Kac V. G., Peterson D. H., “Defining relations of certain infinite-dimensional groups”, Astérisque, 1985, 165–208 | MR | Zbl
[38] Kac V. G., Peterson D. H., “On geometric invariant theory for infinite-dimensional groups”, Algebraic Groups (Utrecht, 1986), Lecture Notes in Math., 1271, Springer, Berlin, 1987, 109–142 | DOI | MR
[39] Kac V. G., Wang S. P., “On automorphisms of Kac–Moody algebras and groups”, Adv. Math., 92 (1992), 129–195 | DOI | MR | Zbl
[40] Kang S.-J., Melville D. J., “Rank $2$ symmetric hyperbolic Kac–Moody algebras”, Nagoya Math. J., 140 (1995), 41–75 | DOI | MR | Zbl
[41] Kleinschmidt A., Nicolai H., “On higher spin realizations of $K(E_{10})$”, J. High Energy Phys., 2013:8 (2013), 041, 28 pp., arXiv: 1307.0413 | DOI | MR | Zbl
[42] Kleinschmidt A., Nicolai H., Palmkvist J., “Modular realizations of hyperbolic Weyl groups”, Adv. Theor. Math. Phys., 16 (2012), 97–148, arXiv: 1010.2212 | DOI | MR | Zbl
[43] Kramer L., “Loop groups and twin buildings”, Geom. Dedicata, 92 (2002), 145–178, arXiv: math.GT/0109128 | DOI | MR | Zbl
[44] Kumar S., Kac–Moody groups, their flag varieties and representation theory, Progress in Mathematics, 204, Birkhäuser Boston, Inc., Boston, MA, 2002 | DOI | MR | Zbl
[45] Lepowsky J., Moody R. V., “Hyperbolic Lie algebras and quasiregular cusps on Hilbert modular surfaces”, Math. Ann., 245 (1979), 63–88 | DOI | MR | Zbl
[46] Marquis T., An introduction to Kac–Moody groups over fields, EMS Textbooks in Mathematics, European Math. Soc. (EMS), Zürich, 2018 | DOI | MR | Zbl
[47] Mitchell S. A., “Quillen's theorem on buildings and the loops on a symmetric space”, Enseign. Math., 34 (1988), 123–166 | MR | Zbl
[48] Moody R. V., Pianzola A., Lie algebras with triangular decompositions, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley Sons, Inc., New York, 1995 | MR | Zbl
[49] Morita J., “Root strings with three or four real roots in Kac–Moody root systems”, Tohoku Math. J., 40 (1988), 645–650 | DOI | MR | Zbl
[50] Penta D. A., Decomposition of the rank 3 Kac–Moody Lie algebra F with respect to the rank 2 hyperbolic subalgebra Fib, Ph.D. Thesis, State University of New York at Binghamton, 2016, arXiv: 1605.06901 | MR
[51] Pressley A., Segal G., Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986 | MR
[52] Rémy B., Groupes de Kac–Moody déployés et presque déployés, Astérisque, 277, 2002, viii+348 pp. | MR
[53] Ronan M., Lectures on buildings: updated and revised, University of Chicago Press, Chicago, 2009 | MR
[54] Ronan M. A., Tits J., “Twin trees. I”, Invent. Math., 116 (1994), 463–479 | DOI | MR | Zbl
[55] Tichai A., Some lightcone embeddings of Lorentzian Kac–Moody algebras, Masters Thesis, Technische Universität Darmstadt, 2014
[56] Tits J., “Ensembles ordonnés, immeubles et sommes amalgamées”, Bull. Soc. Math. Belg. Sér. A, 38 (1986), 367–387 | MR | Zbl
[57] Tits J., “Théorie des groupes”, Ann. Collège France, 87 (1986), 89–98 | MR
[58] Tits J., “Uniqueness and presentation of Kac–Moody groups over fields”, J. Algebra, 105 (1987), 542–573 | DOI | MR | Zbl
[59] West P., “$E_{11}$ and M theory”, Classical Quantum Gravity, 18 (2001), 4443–4460, arXiv: hep-th/0104081 | DOI | MR | Zbl