Higher Rank $\hat{Z}$ and $F_K$
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study $q$-series-valued invariants of $3$-manifolds that depend on the choice of a root system $G$. This is a natural generalization of the earlier works by Gukov–Pei–Putrov–Vafa [arXiv:1701.06567] and Gukov–Manolescu [arXiv:1904.06057] where they focused on $G={\rm SU}(2)$ case. Although a full mathematical definition for these “invariants” is lacking yet, we define $\hat{Z}^G$ for negative definite plumbed $3$-manifolds and $F_K^G$ for torus knot complements. As in the $G={\rm SU}(2)$ case by Gukov and Manolescu, there is a surgery formula relating $F_K^G$ to $\hat{Z}^G$ of a Dehn surgery on the knot $K$. Furthermore, specializing to symmetric representations, $F_K^G$ satisfies a recurrence relation given by the quantum $A$-polynomial for symmetric representations, which hints that there might be HOMFLY-PT analogues of these $3$-manifold invariants.
Keywords: $3$-manifold, knot, quantum invariant, complex Chern–Simons theory, TQFT, $q$-series, colored Jones polynomial, colored HOMFLY-PT polynomial.
@article{SIGMA_2020_16_a43,
     author = {Sunghyuk Park},
     title = {Higher {Rank} $\hat{Z}$ and $F_K$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a43/}
}
TY  - JOUR
AU  - Sunghyuk Park
TI  - Higher Rank $\hat{Z}$ and $F_K$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a43/
LA  - en
ID  - SIGMA_2020_16_a43
ER  - 
%0 Journal Article
%A Sunghyuk Park
%T Higher Rank $\hat{Z}$ and $F_K$
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a43/
%G en
%F SIGMA_2020_16_a43
Sunghyuk Park. Higher Rank $\hat{Z}$ and $F_K$. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a43/

[1] Bakalov B., Kirillov Jr. A., Lectures on tensor categories and modular functors, University Lecture Series, 21, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[2] Bar-Natan D., Garoufalidis S., “On the Melvin–Morton–Rozansky conjecture”, Invent. Math., 125 (1996), 103–133 | DOI | MR | Zbl

[3] Bringmann K., Mahlburg K., Milas A., “Quantum modular forms and plumbing graphs of 3-manifolds”, J. Combin. Theory Ser. A, 170 (2020), 105145, 32 pp., arXiv: 1810.05612 | DOI | MR | Zbl

[4] Bringmann K., Mahlburg K., Milas A., Higher depth quantum modular forms and plumbed 3-manifolds, arXiv: 1906.10722 | MR

[5] Bringmann K., Milas A., “$W$-algebras, higher rank false theta functions, and quantum dimensions”, Selecta Math. (N.S.), 23 (2017), 1249–1278 | DOI | MR | Zbl

[6] Cheng M. C.N., Chun S., Ferrari F., Gukov S., Harrison S. M., “3d modularity”, J. High Energy Phys., 2019:10 (2019), 010, 95 pp., arXiv: 1809.10148 | DOI

[7] Chun S., Gukov S., Park S., Sopenko N., 3d-3d correspondence for mapping tori, arXiv: 1911.08456

[8] Chung H.-J., BPS invariants for Seifert manifolds, arXiv: 1811.08863 | MR

[9] Deloup F., Turaev V., “On reciprocity”, J. Pure Appl. Algebra, 208 (2007), 153–158, arXiv: math.AC/0512050 | DOI | MR | Zbl

[10] Dunfield N. M., Gukov S., Rasmussen J., “The superpolynomial for knot homologies”, Experiment. Math., 15 (2006), 129–159, arXiv: math.GT/0505662 | DOI | MR | Zbl

[11] Ekholm T., Gruen A., Gukov S., Kucharski P., Park S., Sułkowski P., $\widehat{Z}$ at large $N$: from curve counts to quantum modularity, in preparation

[12] Fuji H., Gukov S., Sułkowski P., “Super-$A$-polynomial for knots and BPS states”, Nuclear Phys. B, 867 (2013), 506–546, arXiv: 1205.1515 | DOI | MR | Zbl

[13] Gukov S., Manolescu C., A two-variable series for knot complements, arXiv: 1904.06057

[14] Gukov S., Pei D., Putrov P., Vafa C., BPS spectra and 3-manifold invariants, arXiv: 1701.06567 | MR

[15] Gukov S., Putrov P., Vafa C., “Fivebranes and 3-manifold homology”, J. High Energy Phys., 2017:7 (2017), 071, 81 pp., arXiv: 1602.05302 | DOI | MR

[16] Mariño M., “Chern–Simons theory, matrix integrals, and perturbative three-manifold invariants”, Comm. Math. Phys., 253 (2005), 25–49, arXiv: hep-th/0207096 | DOI | MR | Zbl

[17] Melvin P. M., Morton H. R., “The coloured Jones function”, Comm. Math. Phys., 169 (1995), 501–520 | DOI | MR | Zbl

[18] Park S., Large color $R$-matrix for knot complements and strange identities, arXiv: 2004.02087

[19] Rozansky L., “The universal $R$-matrix, Burau representation, and the Melvin–Morton expansion of the colored Jones polynomial”, Adv. Math., 134 (1998), 1–31, arXiv: q-alg/9604005 | DOI | MR | Zbl

[20] Zagier D., “Quantum modular forms”, Quanta of Maths, Clay Math. Proc., 11, Amer. Math. Soc., Providence, RI, 2010, 659–675 | MR | Zbl