Mots-clés : universal $R$-matrix, Gauss decomposition.
@article{SIGMA_2020_16_a42,
author = {Naihuan Jing and Ming Liu and Alexander Molev},
title = {Isomorphism between the $R${-Matrix} and {Drinfeld} {Presentations} of {Quantum} {Affine} {Algebra:} {Types} $B$ and $D$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a42/}
}
TY - JOUR AU - Naihuan Jing AU - Ming Liu AU - Alexander Molev TI - Isomorphism between the $R$-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types $B$ and $D$ JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a42/ LA - en ID - SIGMA_2020_16_a42 ER -
%0 Journal Article %A Naihuan Jing %A Ming Liu %A Alexander Molev %T Isomorphism between the $R$-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types $B$ and $D$ %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a42/ %G en %F SIGMA_2020_16_a42
Naihuan Jing; Ming Liu; Alexander Molev. Isomorphism between the $R$-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types $B$ and $D$. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a42/
[1] Beck J., “Braid group action and quantum affine algebras”, Comm. Math. Phys., 165 (1994), 555–568, arXiv: hep-th/9404165 | DOI | MR | Zbl
[2] Beck J., “Convex bases of PBW type for quantum affine algebras”, Comm. Math. Phys., 165 (1994), 193–199, arXiv: hep-th/9407003 | DOI | MR | Zbl
[3] Beck J., Chari V., Pressley A., “An algebraic characterization of the affine canonical basis”, Duke Math. J., 99 (1999), 455–487, arXiv: math.QA/9808060 | DOI | MR | Zbl
[4] Brundan J., Kleshchev A., “Parabolic presentations of the Yangian $Y({\mathfrak{gl}}_n)$”, Comm. Math. Phys., 254 (2005), 191–220, arXiv: math.QA/0407011 | DOI | MR | Zbl
[5] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[6] Damiani I., “La $R$-matrice pour les algèbres quantiques de type affine non tordu”, Ann. Sci. École Norm. Sup. (4), 31 (1998), 493–523 | DOI | MR | Zbl
[7] Damiani I., “The $R$-matrix for (twisted) affine quantum algebras”, Representations and Quantizations (Shanghai, 1998), China High. Educ. Press, Beijing, 2000, 89–144 | MR | Zbl
[8] Ding J. T., Frenkel I. B., “Isomorphism of two realizations of quantum affine algebra $U_q({\mathfrak{gl}}(n))$”, Comm. Math. Phys., 156 (1993), 277–300 | DOI | MR | Zbl
[9] Drinfeld V. G., “Hopf algebras and the quantum Yang–Baxter equation”, Soviet Math. Dokl., 32 (1985), 254–258 | MR
[10] Drinfeld V. G., “A new realization of Yangians and quantized affine algebras”, Soviet Math. Dokl., 36 (1988), 212–216 | MR | Zbl
[11] Frenkel E., Mukhin E., “The Hopf algebra ${\rm Rep}\,U_q\widehat{{\mathfrak{gl}}}_\infty$”, Selecta Math. (N.S.), 8 (2002), 537–635, arXiv: math.AG/0103126 | DOI | MR | Zbl
[12] Frenkel I. B., Reshetikhin N. Yu., “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146 (1992), 1–60 | DOI | MR | Zbl
[13] Gel'fand I. M., Retakh V. S., “Determinants of matrices over noncommutative rings”, Funct. Anal. Appl., 25 (1991), 91–102 | DOI | MR | Zbl
[14] Gel'fand I. M., Retakh V. S., “A theory of noncommutative determinants and characteristic functions of graphs”, Funct. Anal. Appl., 26 (1992), 231–246 | DOI | MR | Zbl
[15] Gow L., Molev A., “Representations of twisted $q$-Yangians”, Selecta Math. (N.S.), 16 (2010), 439–499, arXiv: 0909.4905 | DOI | MR | Zbl
[16] Guay N., Regelskis V., Wendlandt C., “Equivalences between three presentations of orthogonal and symplectic Yangians”, Lett. Math. Phys., 109 (2019), 327–379, arXiv: 1706.05176 | DOI | MR | Zbl
[17] Jimbo M., “A $q$-difference analogue of $U({\mathfrak{g}})$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl
[18] Jimbo M., “Quantum $R$-matrix for the generalized Toda system”, Comm. Math. Phys., 102 (1986), 537–547 | DOI | MR | Zbl
[19] Jing N., Liu M., Molev A., “Isomorphism between the $R$-matrix and Drinfeld presentations of Yangian in types $B$, $C$ and $D$”, Comm. Math. Phys., 361 (2018), 827–872, arXiv: 1705.08155 | DOI | MR | Zbl
[20] Jing N., Liu M., Molev A., “Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: Type $C$”, J. Math. Phys., 61 (2020), 031701, 41 pp., arXiv: 1903.00204 | DOI | MR | Zbl
[21] Khoroshkin S. M., Tolstoy V. N., “Universal $R$-matrix for quantized (super)algebras”, Comm. Math. Phys., 141 (1991), 599–617 | DOI | MR | Zbl
[22] Levendorskiĭ S.Z., “On generators and defining relations of Yangians”, J. Geom. Phys., 12 (1993), 1–11 | DOI | MR | Zbl
[23] Reshetikhin N. Y., Semenov-Tian-Shansky M. A., “Central extensions of quantum current groups”, Lett. Math. Phys., 19 (1990), 133–142 | DOI | MR | Zbl
[24] Tarasov V. O., “Irreducible monodromy matrices for the $R$-matrix of the $XXZ$-model and local lattice quantum Hamiltonians”, Theoret. and Math. Phys., 63 (1985), 440–454 | DOI | MR
[25] Wendlandt C., “The $R$-matrix presentation for the Yangian of a simple Lie algebra”, Comm. Math. Phys., 363 (2018), 289–332, arXiv: 1709.08162 | DOI | MR | Zbl