Isomorphism between the $R$-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types $B$ and $D$
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Following the approach of Ding and Frenkel [Comm. Math. Phys. 156 (1993), 277–300] for type $A$, we showed in our previous work [J. Math. Phys. 61 (2020), 031701, 41 pages] that the Gauss decomposition of the generator matrix in the $R$-matrix presentation of the quantum affine algebra yields the Drinfeld generators in all classical types. Complete details for type $C$ were given therein, while the present paper deals with types $B$ and $D$. The arguments for all classical types are quite similar so we mostly concentrate on necessary additional details specific to the underlying orthogonal Lie algebras.
Keywords: $R$-matrix presentation, Drinfeld new presentation
Mots-clés : universal $R$-matrix, Gauss decomposition.
@article{SIGMA_2020_16_a42,
     author = {Naihuan Jing and Ming Liu and Alexander Molev},
     title = {Isomorphism between the $R${-Matrix} and {Drinfeld} {Presentations} of {Quantum} {Affine} {Algebra:} {Types} $B$ and $D$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a42/}
}
TY  - JOUR
AU  - Naihuan Jing
AU  - Ming Liu
AU  - Alexander Molev
TI  - Isomorphism between the $R$-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types $B$ and $D$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a42/
LA  - en
ID  - SIGMA_2020_16_a42
ER  - 
%0 Journal Article
%A Naihuan Jing
%A Ming Liu
%A Alexander Molev
%T Isomorphism between the $R$-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types $B$ and $D$
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a42/
%G en
%F SIGMA_2020_16_a42
Naihuan Jing; Ming Liu; Alexander Molev. Isomorphism between the $R$-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types $B$ and $D$. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a42/

[1] Beck J., “Braid group action and quantum affine algebras”, Comm. Math. Phys., 165 (1994), 555–568, arXiv: hep-th/9404165 | DOI | MR | Zbl

[2] Beck J., “Convex bases of PBW type for quantum affine algebras”, Comm. Math. Phys., 165 (1994), 193–199, arXiv: hep-th/9407003 | DOI | MR | Zbl

[3] Beck J., Chari V., Pressley A., “An algebraic characterization of the affine canonical basis”, Duke Math. J., 99 (1999), 455–487, arXiv: math.QA/9808060 | DOI | MR | Zbl

[4] Brundan J., Kleshchev A., “Parabolic presentations of the Yangian $Y({\mathfrak{gl}}_n)$”, Comm. Math. Phys., 254 (2005), 191–220, arXiv: math.QA/0407011 | DOI | MR | Zbl

[5] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl

[6] Damiani I., “La $R$-matrice pour les algèbres quantiques de type affine non tordu”, Ann. Sci. École Norm. Sup. (4), 31 (1998), 493–523 | DOI | MR | Zbl

[7] Damiani I., “The $R$-matrix for (twisted) affine quantum algebras”, Representations and Quantizations (Shanghai, 1998), China High. Educ. Press, Beijing, 2000, 89–144 | MR | Zbl

[8] Ding J. T., Frenkel I. B., “Isomorphism of two realizations of quantum affine algebra $U_q({\mathfrak{gl}}(n))$”, Comm. Math. Phys., 156 (1993), 277–300 | DOI | MR | Zbl

[9] Drinfeld V. G., “Hopf algebras and the quantum Yang–Baxter equation”, Soviet Math. Dokl., 32 (1985), 254–258 | MR

[10] Drinfeld V. G., “A new realization of Yangians and quantized affine algebras”, Soviet Math. Dokl., 36 (1988), 212–216 | MR | Zbl

[11] Frenkel E., Mukhin E., “The Hopf algebra ${\rm Rep}\,U_q\widehat{{\mathfrak{gl}}}_\infty$”, Selecta Math. (N.S.), 8 (2002), 537–635, arXiv: math.AG/0103126 | DOI | MR | Zbl

[12] Frenkel I. B., Reshetikhin N. Yu., “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146 (1992), 1–60 | DOI | MR | Zbl

[13] Gel'fand I. M., Retakh V. S., “Determinants of matrices over noncommutative rings”, Funct. Anal. Appl., 25 (1991), 91–102 | DOI | MR | Zbl

[14] Gel'fand I. M., Retakh V. S., “A theory of noncommutative determinants and characteristic functions of graphs”, Funct. Anal. Appl., 26 (1992), 231–246 | DOI | MR | Zbl

[15] Gow L., Molev A., “Representations of twisted $q$-Yangians”, Selecta Math. (N.S.), 16 (2010), 439–499, arXiv: 0909.4905 | DOI | MR | Zbl

[16] Guay N., Regelskis V., Wendlandt C., “Equivalences between three presentations of orthogonal and symplectic Yangians”, Lett. Math. Phys., 109 (2019), 327–379, arXiv: 1706.05176 | DOI | MR | Zbl

[17] Jimbo M., “A $q$-difference analogue of $U({\mathfrak{g}})$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl

[18] Jimbo M., “Quantum $R$-matrix for the generalized Toda system”, Comm. Math. Phys., 102 (1986), 537–547 | DOI | MR | Zbl

[19] Jing N., Liu M., Molev A., “Isomorphism between the $R$-matrix and Drinfeld presentations of Yangian in types $B$, $C$ and $D$”, Comm. Math. Phys., 361 (2018), 827–872, arXiv: 1705.08155 | DOI | MR | Zbl

[20] Jing N., Liu M., Molev A., “Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: Type $C$”, J. Math. Phys., 61 (2020), 031701, 41 pp., arXiv: 1903.00204 | DOI | MR | Zbl

[21] Khoroshkin S. M., Tolstoy V. N., “Universal $R$-matrix for quantized (super)algebras”, Comm. Math. Phys., 141 (1991), 599–617 | DOI | MR | Zbl

[22] Levendorskiĭ S.Z., “On generators and defining relations of Yangians”, J. Geom. Phys., 12 (1993), 1–11 | DOI | MR | Zbl

[23] Reshetikhin N. Y., Semenov-Tian-Shansky M. A., “Central extensions of quantum current groups”, Lett. Math. Phys., 19 (1990), 133–142 | DOI | MR | Zbl

[24] Tarasov V. O., “Irreducible monodromy matrices for the $R$-matrix of the $XXZ$-model and local lattice quantum Hamiltonians”, Theoret. and Math. Phys., 63 (1985), 440–454 | DOI | MR

[25] Wendlandt C., “The $R$-matrix presentation for the Yangian of a simple Lie algebra”, Comm. Math. Phys., 363 (2018), 289–332, arXiv: 1709.08162 | DOI | MR | Zbl