@article{SIGMA_2020_16_a41,
author = {Edward Frenkel},
title = {Is {There} an {Analytic} {Theory} of {Automorphic} {Functions} for {Complex} {Algebraic} {Curves?}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a41/}
}
Edward Frenkel. Is There an Analytic Theory of Automorphic Functions for Complex Algebraic Curves?. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a41/
[1] Alvarenga R., Hall algebra and graphs of Hecke operators for elliptic curves, arXiv: 1805.00567 | MR
[2] Arinkin D., Gaitsgory D., “Singular support of coherent sheaves and the geometric Langlands conjecture”, Selecta Math. (N.S.), 21 (2015), 1–199, arXiv: 1201.6343 | DOI | MR | Zbl
[3] Atiyah M. F., “Vector bundles over an elliptic curve”, Proc. London Math. Soc., 7 (1957), 414–452 | DOI | MR | Zbl
[4] Atiyah M. F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR | Zbl
[5] Beilinson A., Bernstein J., “A proof of Jantzen conjectures”, I. M Gel'fand Seminar, Adv. Soviet Math., 16, Amer. Math. Soc., Providence, RI, 1993, 1–50 | MR | Zbl
[6] Beilinson A., Drinfeld V., Quantization of Hitchin's integrable system and Hecke eigensheaves http://math.uchicago.edu/d̃rinfeld/langlands/QuantizationHitchin.pdf
[7] Boozer D., Moduli spaces of Hecke modifications for rational and elliptic curves, arXiv: 1805.11184
[8] Braverman A., Kazhdan D., “Some examples of Hecke algebras for two-dimensional local fields”, Nagoya Math. J., 184 (2006), 57–84, arXiv: math.RT/0510538 | DOI | MR | Zbl
[9] Braverman A., Kazhdan D., “The spherical Hecke algebra for affine Kac–Moody groups I”, Ann. of Math., 174 (2011), 1603–1642, arXiv: 0809.1461 | DOI | MR | Zbl
[10] Casselman W., Cely J. E., Hales T., “The spherical Hecke algebra, partition functions, and motivic integration”, Trans. Amer. Math. Soc., 371 (2019), 6169–6212, arXiv: 1611.05773 | DOI | MR | Zbl
[11] Cluckers R., Loeser F., “Constructible motivic functions and motivic integration”, Invent. Math., 173 (2008), 23–121, arXiv: math.AG/0410203 | DOI | MR | Zbl
[12] Drinfeld V. G., “Langlands' conjecture for ${\rm GL}(2)$ over functional fields”, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, 565–574 | MR
[13] Drinfeld V. G., “Two-dimensional $l$-adic representations of the fundamental group of a curve over a finite field and automorphic forms on ${\rm GL}(2)$”, Amer. J. Math., 105 (1983), 85–114 | DOI | MR | Zbl
[14] Drinfeld V. G., “Moduli varieties of $F$-sheaves”, Funct. Anal. Appl., 21 (1987), 107–122 | DOI | MR | Zbl
[15] Drinfeld V. G., “The proof of Petersson's conjecture for ${\rm GL}(2)$ over a global field of characteristic $p$”, Funct. Anal. Appl., 22 (1988), 28–43 | DOI | MR | Zbl
[16] Etingof P., Frenkel E., Kazhdan D., An analytic version of the Langlands correspondence for complex curves, arXiv: 1908.09677
[17] Etingof P., Frenkel E., Kazhdan D., Hecke operators for curves over local fields, in preparation
[18] Feigin B., Frenkel E., “Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras”, Internat. J. Modern Phys. A, 7, suppl. 1A (1992), 197–215 | DOI | MR | Zbl
[19] Fesenko I., Analysis on arithmetic schemes, extra vol., v. I, 2003, 261–284 | MR | Zbl
[20] Amer. Math. Soc. Transl. Ser. 2, 219, Amer. Math. Soc., Providence, RI, 2006, 149–165 | DOI | MR | Zbl
[21] Frenkel E., “Wakimoto modules, opers and the center at the critical level”, Adv. Math., 195 (2005), 297–404, arXiv: math.QA/0210029 | DOI | MR | Zbl
[22] Frenkel E., Langlands correspondence for loop groups, Cambridge Studies in Advanced Mathematics, 103, Cambridge University Press, Cambridge, 2007 | MR | Zbl
[23] Frenkel E., “Lectures on the Langlands program and conformal field theory”, Frontiers in Number Theory, Physics, and Geometry, v. II, Springer, Berlin, 2007, 387–533, arXiv: hep-th/0512172 | DOI | MR
[24] Frenkel E., Gauge theory and Langlands duality, Talk given at MSRI (Berkeley, September 2014) https://youtu.be/NQfeBeRKMiw?t=4190
[25] Frenkel E., Gaitsgory D., Vilonen K., “On the geometric Langlands conjecture”, J. Amer. Math. Soc., 15 (2002), 367–417, arXiv: math.AG/0012255 | DOI | MR | Zbl
[26] Gaitsgory D., “On a vanishing conjecture appearing in the geometric Langlands correspondence”, Ann. of Math., 160 (2004), 617–682, arXiv: math.AG/0204081 | DOI | MR | Zbl
[27] Gaitsgory D., “Outline of the proof of the geometric Langlands conjecture for ${\rm GL}_2$”, Astérisque, 370, 2015, 1–112, arXiv: 1302.2506 | MR | Zbl
[28] Gaitsgory D., “Progrès récents dans la théorie de Langlands géométrique”, Astérisque, 390, no. 1109, 2017, 139–168, arXiv: 1606.09462 | MR | Zbl
[29] Gawȩdzki K., “Lectures on conformal field theory”, Quantum Fields and Strings: a Course for Mathematicians (Princeton, NJ, 1996/1997), v. 1, 2, Amer. Math. Soc., Providence, RI, 1999, 727–805 | MR | Zbl
[30] Ginzburg V., Perverse sheaves on a loop group and Langlands duality, arXiv: alg-geom/9511007 | MR
[31] Goldman W. M., “Projective structures with Fuchsian holonomy”, J. Differential Geom., 25 (1987), 297–326 | DOI | MR | Zbl
[32] Gordon J., “Motivic Haar measure on reductive groups”, Canad. J. Math., 58 (2006), 93–114, arXiv: math.AG/0203106 | DOI | MR | Zbl
[33] Griffiths P., Harris J., Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978 | MR | Zbl
[34] Hrushovski E., Kazhdan D., “Integration in valued fields”, Algebraic geometry and number theory, Progr. Math., 253, Birkhäuser Boston, Boston, MA, 2006, 261–405, arXiv: math.AG/0510133 | DOI | MR | Zbl
[35] Hrushovski E., Kazhdan D., “The value ring of geometric motivic integration, and the Iwahori Hecke algebra of ${\rm SL}_2$”, Geom. Funct. Anal., 17 (2008), 1924–1967, arXiv: math.AG/0609115 | DOI | MR | Zbl
[36] Kapranov M., “Double affine Hecke algebras and 2-dimensional local fields”, J. Amer. Math. Soc., 14 (2001), 239–262, arXiv: math.AG/9812021 | DOI | MR | Zbl
[37] Kim H. H., Lee K. H., “Spherical Hecke algebras of $\rm {\rm SL}_2$ over 2-dimensional local fields”, Amer. J. Math., 126 (2004), 1381–1399 | DOI | MR | Zbl
[38] Knapp A. W., Vogan Jr. D.A., Cohomological induction and unitary representations, Princeton Mathematical Series, 45, Princeton University Press, Princeton, NJ, 1995 | DOI | MR | Zbl
[39] Kontsevich M., “Notes on motives in finite characteristic”, Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin, v. II, Progr. Math., 270, Birkhäuser Boston, Boston, MA, 2009, 213–247, arXiv: math.AG/0702206 | DOI | MR | Zbl
[40] Lafforgue L., “Chtoucas de Drinfeld et correspondance de Langlands”, Invent. Math., 147 (2002), 1–241 | DOI | MR | Zbl
[41] Langlands R. P., “Problems in the theory of automorphic forms”, Lectures in Modern Analysis and Applications, v. III, Lecture Notes in Math., 170, Springer, Berlin, 1970, 18–61 | DOI | MR
[42] Langlands R. P., On the analytical form of the geometric theory of automorphic forms (in Russian) http://publications.ias.edu/rpl/paper/2678
[43] Laumon G., “Correspondance de Langlands géométrique pour les corps de fonctions”, Duke Math. J., 54 (1987), 309–359 | DOI | MR | Zbl
[44] Laumon G., “Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil”, Inst. Hautes Études Sci. Publ. Math., 65 (1987), 131–210 | DOI | MR | Zbl
[45] Lorscheid O., “Automorphic forms for elliptic function fields”, Math. Z., 272 (2012), 885–911, arXiv: 1012.4825 | DOI | MR | Zbl
[46] Lusztig G., “Singularities, character formulas, and a $q$-analog of weight multiplicities”, Astérisque, 101, 1983), 208–229. | MR | Zbl
[47] Mirković I., Vilonen K., “Geometric Langlands duality and representations of algebraic groups over commutative rings”, Ann. of Math., 166 (2007), 95–143, arXiv: math.RT/0401222 | DOI | MR | Zbl
[48] Morrow M., “Integration on product spaces and ${\rm GL}_n$ of a valuation field over a local field”, Commun. Number Theory Phys., 2 (2008), 563–592, arXiv: 0712.2175 | DOI | MR | Zbl
[49] Morrow M., “Integration on valuation fields over local fields”, Tokyo J. Math., 33 (2010), 235–281, arXiv: 0712.2172 | DOI | MR | Zbl
[50] Teschner J., Quantisation conditions of the quantum Hitchin system and the real geometric Langlands correspondence, arXiv: 1707.07873 | MR
[51] Waller R., Private communication, November 2018
[52] Waller R., Measure and integration on non-locally compact spaces and representation theory, Ph.D. Thesis, University of Nottingham, 2019 | MR
[53] Weil A., “A 1940 letter of André Weil on analogy in mathematics (translated by Martin H. Krieger)”, Notices Amer. Math. Soc., 52 (2005), 334–341 https://www.ams.org/notices/200503/fea-weil.pdf | MR | Zbl