@article{SIGMA_2020_16_a4,
author = {Yuya Takeuchi},
title = {A {Constraint} on {Chern} {Classes} of {Strictly} {Pseudoconvex} {CR} {Manifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a4/}
}
Yuya Takeuchi. A Constraint on Chern Classes of Strictly Pseudoconvex CR Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a4/
[1] Boutet de Monvel L., “Intégration des équations de Cauchy–Riemann induites formelles”, Équations aux derivées partielles linéaires et non linéaires, Séminaire Goulaouic–Lions–Schwartz, 1974–1975, no. 9, Centre Math., École Polytech., Paris, 1975, 14 pp. | MR
[2] Bungart L., “Vanishing cup products on pseudoconvex CR manifolds”, The Madison Symposium on Complex Analysis (Madison, WI, 1991), Contemp. Math., 137, Amer. Math. Soc., Providence, RI, 1992, 105–111 | DOI | MR
[3] Cao J., Chang S.-C., “Pseudo-Einstein and $Q$-flat metrics with eigenvalue estimates on CR-hypersurfaces”, Indiana Univ. Math. J., 56 (2007), 2839–2857, arXiv: math.DG/0609312 | DOI | MR | Zbl
[4] Case J. S., Gover A. R., “The $P'$-operator, the $Q'$-curvature, and the CR tractor calculus”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (to appear) , arXiv: 1709.08057
[5] Etnyre J. B., Ozbagci B., “Invariants of contact structures from open books”, Trans. Amer. Math. Soc., 360 (2008), 3133–3151, arXiv: math.GT/0605441 | DOI | MR | Zbl
[6] Harvey F. R., Lawson H. B. (Jr.), “On boundaries of complex analytic varieties. I”, Ann. of Math., 102 (1975), 223–290 | DOI | MR | Zbl
[7] Kollár J., “Links of complex analytic singularities”, Surveys in Differential Geometry. Geometry and Topology, Surv. Differ. Geom., 18, Int. Press, Somerville, MA, 2013, 157–193, arXiv: 1209.1754 | DOI | MR | Zbl
[8] Lempert L., “Algebraic approximations in analytic geometry”, Invent. Math., 121 (1995), 335–353 | DOI | MR
[9] Marugame T., “Renormalized Chern–Gauss–Bonnet formula for complete Kähler–Einstein metrics”, Amer. J. Math., 138 (2016), 1067–1094, arXiv: 1309.2766 | DOI | MR | Zbl
[10] Ohsawa T., “A reduction theorem for cohomology groups of very strongly $q$-convex Kähler manifolds”, Invent. Math., 63 (1981), 335–354 | DOI | MR | Zbl
[11] Ohsawa T., “Addendum to: "A reduction theorem for cohomology groups of very strongly $q$-convex Kähler manifolds"”, Invent. Math., 66 (1982), 391–393 | DOI | MR | Zbl
[12] Popescu-Pampu P., “On the cohomology rings of holomorphically fillable manifolds”, Singularities II, Contemp. Math., 475, Amer. Math. Soc., Providence, RI, 2008, 169–188, arXiv: 0712.3484 | DOI | MR | Zbl