Mots-clés : isomonodromic deformations
@article{SIGMA_2020_16_a39,
author = {Giordano Cotti and Boris Dubrovin and Davide Guzzetti},
title = {Local {Moduli} of {Semisimple} {Frobenius} {Coalescent} {Structures}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a39/}
}
TY - JOUR AU - Giordano Cotti AU - Boris Dubrovin AU - Davide Guzzetti TI - Local Moduli of Semisimple Frobenius Coalescent Structures JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a39/ LA - en ID - SIGMA_2020_16_a39 ER -
Giordano Cotti; Boris Dubrovin; Davide Guzzetti. Local Moduli of Semisimple Frobenius Coalescent Structures. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a39/
[1] Abramowitz M., Stegun I.A., Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover Publications, New York, 1972 | MR
[2] Arnol'd V.I., “Normal forms of functions near degenerate critical points, the Weyl groups $A_{k}$, $D_{k}$, $E_{k}$ and Lagrangian singularities”, Funct. Anal. Appl., 6 (1972), 254–272 | DOI | MR
[3] Arnol'd V.I., Singularities of caustics and wave fronts, Mathematics and its Applications (Soviet Series), 62, Kluwer Academic Publishers Group, Dordrecht, 1990 | DOI | MR | Zbl
[4] Arnol'd V.I., Goryunov V.V., Lyashko O.V., Vasil'ev V.A., Dynamical systems VI – Singularity theory I, Encyclopaedia of Mathematical Sciences, 6, Springer, Berlin, 1998 | DOI | MR
[5] Arnol'd V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of differentiable maps, v. I, Monographs in Mathematics, 82, The classification of critical points caustics and wave fronts, Birkhäuser Boston, Inc., Boston, MA, 1988 | DOI | MR
[6] Arnol'd V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of differentiable maps, v. II, Monographs in Mathematics, 83, Monodromy and asymptotic integrals, Birkhäuser Boston, Inc., Boston, MA, 1988 | DOI | MR | Zbl
[7] Balser W., Jurkat W.B., Lutz D.A., “Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations”, J. Math. Anal. Appl., 71 (1979), 48–94 | DOI | MR | Zbl
[8] Balser W., Jurkat W.B., Lutz D.A., “A general theory of invariants for meromorphic differential equations. I. Formal invariants”, Funkcial. Ekvac., 22 (1979), 197–221 | MR | Zbl
[9] Bayer A., “Semisimple quantum cohomology and blowups”, Int. Math. Res. Not., 2004 (2004), 2069–2083 | DOI | MR | Zbl
[10] Bayer A., Manin Yu.I., “(Semi)simple exercises in quantum cohomology”, The Fano Conference (University of Torino, Turin, 2004), 143–173, arXiv: math.AG/0103164 | MR | Zbl
[11] Bertram A., “Quantum Schubert calculus”, Adv. Math., 128 (1997), 289–305, arXiv: alg-geom/9410024 | DOI | MR | Zbl
[12] Blok B., Varchenko A., “Topological conformal field theories and the flat coordinates”, Internat. J. Modern Phys. A, 7 (1992), 1467–1490 | DOI | MR | Zbl
[13] Bourbaki N., Algebra II, Chapters 4–7, Elements of Mathematics, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl
[14] Buch A.S., “Quantum cohomology of Grassmannians”, Compos. Math., 137 (2003), 227–235, arXiv: math.AG/0106268 | DOI | MR | Zbl
[15] Chaput P.E., Manivel L., Perrin N., “Quantum cohomology of minuscule homogeneous spaces III Semi-simplicity and consequences”, Canad. J. Math., 62 (2010), 1246–1263, arXiv: 0710.1224 | DOI | MR | Zbl
[16] Ciolli G., “Computing the quantum cohomology of some Fano threefolds and its semisimplicity”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 7 (2004), 511–517 | MR | Zbl
[17] Cotti G., Coalescence phenomenon of quantum cohomology of Grassmannians and the distribution of prime numbers, arXiv: 1608.06868
[18] Cotti G., Dubrovin B., Guzzetti D., Helix structures in quantum cohomology of fano varieties, arXiv: 1811.09235
[19] Cotti G., Dubrovin B., Guzzetti D., “Isomonodromy deformations at an irregular singularity with coalescing eigenvalues”, Duke Math. J., 168 (2019), 967–1108, arXiv: 1706.04808 | DOI | MR | Zbl
[20] Cox D.A., Katz S., Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs, 68, Amer. Math. Soc., Providence, RI, 1999 | DOI | MR | Zbl
[21] Dijkgraaf R., Verlinde H., Verlinde E., “Notes on topological string theory and 2d quantum gravity”, String Theory and Quantum Gravity, World Sci. Publ., 1991, 91–156 | MR
[22] Dubrovin B., “Integrable systems in topological field theory”, Nuclear Phys. B, 379 (1992), 627–689 | DOI | MR
[23] Dubrovin B., “Geometry of $2$D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | DOI | MR | Zbl
[24] Dubrovin B., “Differential geometry of the space of orbits of a Coxeter group”, Surveys in Differential Geometry: Integral Systems [Integrable Systems], Surv. Differ. Geom., 4, Int. Press, Boston, MA, 1998, 181–211, arXiv: hep-th/9303152 | DOI | MR
[25] Dubrovin B., “Geometry and analytic theory of Frobenius manifolds”, Doc. Math., extra, v. II, 1998, 315–326, arXiv: math.AG/9807034 | MR | Zbl
[26] Dubrovin B., “Painlevé transcendents in two-dimensional topological field theory”, The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 287–412, arXiv: math.AG/9803107 | DOI | MR | Zbl
[27] Dubrovin B., “On almost duality for Frobenius manifolds”, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 75–132, arXiv: math.DG/0307374 | DOI | MR | Zbl
[28] Dubrovin B., “Quantum cohomology and isomonodromic deformation”, Lecture at “Recent Progress in the Theory of Painlevé Equations: Algebraic, Asymptotic and Topological Aspects” (Strasbourg, November 2013)
[29] Dubrovin B., Mazzocco M., “Monodromy of certain Painlevé-VI transcendents and reflection groups”, Invent. Math., 141 (2000), 55–147, arXiv: math.AG/9806056 | DOI | MR | Zbl
[30] Eguchi T., Hori K., Xiong C.-S., “Gravitational quantum cohomology”, Internat. J. Modern Phys. A, 12 (1997), 1743–1782, arXiv: hep-th/9605225 | DOI | MR | Zbl
[31] Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Yu., Painlevé transcendents. The Riemann-Hilbert approach, Mathematical Surveys and Monographs, 128, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR
[32] Fulton W., Harris J., Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | DOI | MR | Zbl
[33] Galkin S., Golyshev V., Iritani H., “Gamma classes and quantum cohomology of Fano manifolds: gamma conjectures”, Duke Math. J., 165 (2016), 2005–2077, arXiv: 1404.6407 | DOI | MR | Zbl
[34] Gantmacher F.R., The theory of matrices, v. 1, 2, Chelsea Publishing Co., New York, 1959 | MR
[35] Gel'fand I.M., Kapranov M.M., Zelevinsky A.V., Discriminants, resultants, and multidimensional determinants, Mathematics: Theory Applications, Birkhäuser Boston, Inc., Boston, MA, 1994 | DOI | MR | Zbl
[36] Givental A., “Elliptic Gromov–Witten invariants and the generalized mirror conjecture”, Integrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997), World Sci. Publ., River Edge, NJ, 1998, 107–155, arXiv: math.AG/9803053 | MR | Zbl
[37] Gorodentsev A.L., “Transformations of exceptional bundles on $P^n$”, Math. USSR Izv., 32 (1989), 1–13 | DOI | MR | Zbl
[38] Gorodentsev A.L., “Exceptional objects and mutations in derived categories”, Helices and Vector Bundles, London Math. Soc. Lecture Note Ser., 148, Cambridge University Press, Cambridge, 1990, 57–73 | DOI | MR
[39] Gorodentsev A.L., “Helix theory and nonsymmetrical bilinear forms”, Algebraic Geometry and its Applications (Yaroslavl', 1992), Aspects Math., E25, Friedr. Vieweg, Braunschweig, 1994, 47–59 | DOI | MR
[40] Gorodentsev A.L., Kuleshov S.A., “Helix theory”, Mosc. Math. J., 4 (2004), 377–440 | DOI | MR | Zbl
[41] Gorodentsev A.L., Rudakov A.N., “Exceptional vector bundles on projective spaces”, Duke Math. J., 54 (1987), 115–130 | DOI | MR | Zbl
[42] Guzzetti D., “Inverse problem and monodromy data for three-dimensional Frobenius manifolds”, Math. Phys. Anal. Geom., 4 (2001), 245–291 | DOI | MR | Zbl
[43] Guzzetti D., “The singularity of Kontsevich's solution for $QH^\ast\big({\mathbb{CP}}^2\big)$”, Math. Phys. Anal. Geom., 8 (2005), 41–58, arXiv: math-ph/0301011 | DOI | MR | Zbl
[44] Hertling C., Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Mathematics, 151, Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl
[45] Hertling C., Manin Yu.I., Teleman C., “An update on semisimple quantum cohomology and $F$-manifolds”, Proc. Steklov Inst. Math., 264 (2009), 62–69, arXiv: 0803.2769 | DOI | MR | Zbl
[46] Hirzebruch F., Topological methods in algebraic geometry, Die Grundlehren der Mathematischen Wissenschaften, 131, Springer-Verlag, New York, 1966 | DOI | MR | Zbl
[47] Hori K., “Constraints for topological strings in $D\geq 1$”, Nuclear Phys. B, 439 (1995), 395–420, arXiv: hep-th/9411135 | DOI | MR | Zbl
[48] Iritani H., “Convergence of quantum cohomology by quantum Lefschetz”, J. Reine Angew. Math., 610 (2007), 29–69, arXiv: math.DG/0506236 | DOI | MR | Zbl
[49] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl
[50] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III”, Phys. D, 4 (1981), 26–46 | DOI | MR | Zbl
[51] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I General theory and $\tau $-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl
[52] Kato T., Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl
[53] Katzarkov L., Kontsevich M., Pantev T., “Hodge theoretic aspects of mirror symmetry”, From Hodge Theory to Integrability and TQFT $tt^*$-Geometry, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008, 87–174, arXiv: 0806.0107 | DOI | MR | Zbl
[54] Kontsevich M., Manin Yu.I., “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Comm. Math. Phys., 164 (1994), 525–562, arXiv: hep-th/9402147 | DOI | MR | Zbl
[55] Luke Y.L., The special functions and their approximations, v. I, Mathematics in Science and Engineering, 53, Academic Press, New York–London, 1969 | MR | Zbl
[56] Manin Yu.I., Frobenius manifolds, quantum cohomology, and moduli spaces, American Mathematical Society Colloquium Publications, 47, Amer. Math. Soc., Providence, RI, 1999 | DOI | MR | Zbl
[57] Nekrasov N.A., “On the cohomology of the complement of the bifurcation diagram of the singularity $A_\mu$”, Funct. Anal. Appl., 27 (1993), 245–250 | DOI | MR | Zbl
[58] Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (eds), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010 https://dlmf.nist.gov/ | MR
[59] Paris R.B., Kaminski D., Asymptotics and Mellin–Barnes integrals, Encyclopedia of Mathematics and its Applications, 85, Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl
[60] Sabbah C., Isomonodromic deformations and Frobenius manifolds. An introduction, Universitext, Springer-Verlag London, Ltd., London, 2007 | DOI | MR | Zbl
[61] Saito K., “Period mapping associated to a primitive form”, Publ. Res. Inst. Math. Sci., 19 (1983), 1231–1264 | DOI | MR | Zbl
[62] Saito K., “On a linear structure of the quotient variety by a finite reflexion group”, Publ. Res. Inst. Math. Sci., 29 (1993), 535–579 | DOI | MR | Zbl
[63] Saito K., Yano T., Sekiguchi J., “On a certain generator system of the ring of invariants of a finite reflection group”, Comm. Algebra, 8 (1980), 373–408 | DOI | MR | Zbl
[64] Saito M., “On the structure of Brieskorn lattice”, Ann. Inst. Fourier (Grenoble), 39 (1989), 27–72 | DOI | MR | Zbl
[65] Siebert B., Tian G., “On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator”, Asian J. Math., 1 (1997), 679–695, arXiv: alg-geom/9403010 | DOI | MR | Zbl
[66] Strachan I.A.B., “Frobenius submanifolds”, J. Geom. Phys., 38 (2001), 285–307, arXiv: math.DG/9912081 | DOI | MR | Zbl
[67] Strachan I.A.B., “Frobenius manifolds: natural submanifolds and induced bi-Hamiltonian structures”, Differential Geom. Appl., 20 (2004), 67–99 | DOI | MR | Zbl
[68] Teleman C., “The structure of 2D semi-simple field theories”, Invent. Math., 188 (2012), 525–588, arXiv: 0712.0160 | DOI | MR | Zbl
[69] Tian G., “Quantum cohomology and its associativity”, Current Developments in Mathematics (1994, Cambridge, MA), Int. Press, Cambridge, MA, 1995, 361–401 | DOI | MR | Zbl
[70] Vafa C., “Topological mirrors and quantum rings”, Essays on Mirror Manifolds, Int. Press, Hong Kong, 1992, 96–119 | MR | Zbl
[71] Vassiliev V.A., Complements of discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs, 98, Amer. Math. Soc., Providence, RI, 1992 | DOI | MR
[72] Voisin C., Symétrie miroir, Panoramas et Synthèses, 2, Société Mathématique de France, Paris, 1996 | MR
[73] Wasow W., Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, 14, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1965 | MR | Zbl
[74] Watson G.N., A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1944 | MR | Zbl
[75] Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl
[76] Witten E., “The Verlinde algebra and the cohomology of the Grassmannian”, Geometry, Topology, Physics, Int. Press, Cambridge, MA, 1995, 357–422 | MR | Zbl